M. Veldhorst Qutech和卡夫利纳米科学学院,代尔夫特技术大学,荷兰摘要我们采用可扩展量子技术的方法脱离了晶体管,这是人类制造的最复制的结构。我们在硅和锗量子点的电子和孔的自旋状态下定义了Qubit。在这次演讲中,我将介绍我们最新的结果,以提高量子质量和数量。首先,我们证明即使是一个孔也可以连贯地控制。通过利用孔的强旋轨相互作用,我们获得了99.99%的栅极保真度的快速量子操作,为量子点系统设定了新的基准测试。此外,通过动态解耦,我们获得了孔的创纪录相干时间,并通过将此技术应用于带滤波器,我们能够测量与核自旋的横向超精细相互作用。第二,我们证明可以在相同的温度状态下操作量子点量子和控制电子设备。此外,我们表明可以使用完全工业的300毫米晶圆过程来实现量子位。这些共同定义了迈向集成量子电路的关键步骤。第三,我们构造了一个2x2量子点阵列,并在二维中显示量子耦合。我们获得了通用控制,并证明了纠缠和解开所有四个量子位的量子电路的连贯执行。Bio Menno Veldhorst是Qutech的小组负责人,Qutech Academy的领导和Tu Delft扩展学校的投资组合总监。他发表了60多篇论文,其中包括《科学与自然期刊》中的18个出版物。最后,我将提出克服量子到问题变化的策略,旨在构建比量子数少的控制线较少的量子系统,以实现量子和技术的相同材料和技术来实现量子优势,从而实现了当今信息年龄的相同材料和技术。Veldhorst在Twente大学获得了优异的奖项(A. Brinkman教授和H. Hilgenkamp教授)。他在新南威尔士大学的教授小组中进行了博士后研究。 A. Dzurak在硅中展示了单一和两分Qubit的逻辑,在2015年被物理学世界称为2015年物理学的前十名突破之一。他在Qutech的小组引入了平面锗量子,在一个开尔文上方证明了硅的通用逻辑,并实现了带有量子点的四个Qubit逻辑。为他对硅和锗量子技术的贡献,他获得了尼古拉斯·库尔蒂科学奖,他被列为麻省理工学院技术评论列表中的有远见的人35下的创新者。作为Qutech Lead Academy,Veldhorst开发了有关量子技术的大型在线课程(MOOC),这些课程吸引了已经吸引了80.000多名学生。
我们通过在100 mm ge晶片上减少压力化学蒸气沉积来生长紧张的GE/SIGE异质结构。将GE晶片用作外部延长的底物可以使高质量的GE富含SIGE应变 - 释放的缓冲液具有螺纹位错密度为ð66 6 61Þ10 5 cm 2,与SI Wafers上的控制应变缓冲区相比,几乎是一个数量级的改善。相关的短距离散射的减少可以极大地改善二维孔气体的疾病性能,该特性在几个GE/SIGE异质结构领域效应的晶体管中测量。We measure an average low percolation density of ð 1 : 22 6 0 : 03 Þ 10 10 cm 2 and an average maximum mobility of ð 3 : 4 6 0 : 1 Þ 10 6 cm 2 = Vs and quantum mobility of ð 8 : 4 6 0 : 5 Þ 10 4 cm 2 = Vs when the hole density in the quantum well is satu- rated to ð 1 : 65 6 0 : 02 Þ 10 11 cm 2 。我们预计,这些异质结构即时应用于下一代,高性能的GE旋转量,并将其集成到更大的量子处理器中。
- AS Rao、D. Buterakos、F. Borsoi、JP。兹沃拉克,MJ.古兰斯.半导体量子系统中的点间辅助噪声学习。 (准备中) - AS Rao,S. Muleady,CD。怀特,A. 西吉利托,MJ。古兰斯.用于自旋穿梭的一维电阻顶栅中的维格纳晶体物理。 (准备中) - AS Rao、D Buterakos、B van Straaten、V John、CX。于,SD。 Oosterhout、L Stehouwer、G Scappucci、M Veldhorst、F Borsoi,JP。兹沃拉克。 MAViS:二维半导体量子点阵列的模块化自主虚拟化系统。 (提交给 PRX)- A Rao、D Madan、A Ray、D Vinayagamurthy、MS Santhanam。使用量子增强变分自动编码器学习硬分布。arXiv:2305.01592 - A Rao、S Carr、C Snider、DE Feldman、C Ramanathan、VF Mitrović。机器学习辅助确定磁共振电子相关性。(物理评论研究 5 (4),043098)
参考文献1。Divincenzo,D。P.量子计算的物理实施。Fortschritte der Physik:物理进展48,771(2000)。2。Ladd,T。D.等。量子计算机。自然464,45(2010)。3。Ito,T。等。四个四倍量子点中的四个单旋rabi振荡。应用物理信函113,093102(2018)。4。Mills,A。R.等。将单个电荷穿过一维硅量子点。自然传播10,1063(2019)。5。Mortemousque,P.A。等。在二维量子点阵列中对单个电子旋转的相干控制。自然纳米技术(2020)。6。损失,D。,Divincenzo,D。P.用量子点进行量子计算。物理评论A 57,120(1998)。7。Veldhorst,M。等。具有容忍控制的可寻址量子点量子量子。自然纳米技术9,981(2014)。8。Veldhorst,M。等。硅中的两分逻辑门。自然526,410(2015)。9。Takeda,K。等。 天然硅量子点中的易耐故障可寻址自旋值。 科学进步2,E1600694(2016)。 10。 Watson,T。F.等。 硅中可编程的两分量子处理器。 自然555,633(2018)。 11。 Zajac,D。M.等。 电子旋转的共同驱动的CNOT门。Takeda,K。等。天然硅量子点中的易耐故障可寻址自旋值。科学进步2,E1600694(2016)。10。Watson,T。F.等。 硅中可编程的两分量子处理器。 自然555,633(2018)。 11。 Zajac,D。M.等。 电子旋转的共同驱动的CNOT门。Watson,T。F.等。硅中可编程的两分量子处理器。自然555,633(2018)。11。Zajac,D。M.等。电子旋转的共同驱动的CNOT门。科学359,439(2018)。12。Yoneda,J。等。 一个量子点旋转量子置量量子,一致性限制了电荷噪声,而忠诚度则高于99.9%。 自然纳米技术13,102(2018)。 13。 Takeda,K。等。 在诱导频移的存在下,对Si/Sige自旋量子置量置量的优化电控制。 NPJ量子信息4,1(2018)。 14。 Huang,W。等。 硅在硅中的两倍大门的保真基准。 自然569,532(2019)。 15。 Zheng,G。等。 使用芯片谐振器在硅中快速基于门的自旋读出。 自然纳米技术14,742(2019)。 16。 Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Yoneda,J。等。一个量子点旋转量子置量量子,一致性限制了电荷噪声,而忠诚度则高于99.9%。自然纳米技术13,102(2018)。13。Takeda,K。等。 在诱导频移的存在下,对Si/Sige自旋量子置量置量的优化电控制。 NPJ量子信息4,1(2018)。 14。 Huang,W。等。 硅在硅中的两倍大门的保真基准。 自然569,532(2019)。 15。 Zheng,G。等。 使用芯片谐振器在硅中快速基于门的自旋读出。 自然纳米技术14,742(2019)。 16。 Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Takeda,K。等。在诱导频移的存在下,对Si/Sige自旋量子置量置量的优化电控制。NPJ量子信息4,1(2018)。14。Huang,W。等。 硅在硅中的两倍大门的保真基准。 自然569,532(2019)。 15。 Zheng,G。等。 使用芯片谐振器在硅中快速基于门的自旋读出。 自然纳米技术14,742(2019)。 16。 Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Huang,W。等。硅在硅中的两倍大门的保真基准。自然569,532(2019)。15。Zheng,G。等。 使用芯片谐振器在硅中快速基于门的自旋读出。 自然纳米技术14,742(2019)。 16。 Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Zheng,G。等。使用芯片谐振器在硅中快速基于门的自旋读出。自然纳米技术14,742(2019)。16。Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Volk,C。等。通过高频累积门对Si/Sige量子点的快速电荷传感。Nano Letters 19,5628(2019)。
