硬件描述语言 (HDL)、Verilog 和 VHDL 在将这些算法转换为实时应用时起着至关重要的作用。在此阶段,必须将算法转换、综合并映射到给定的技术上。此外,还必须满足设计的面积、速度和功率约束要求。只有对数字电路设计有很好的理解,才有可能实现这一点。因此,本高端研讨会将介绍信号和图像处理领域中各种算法的 VLSI 架构。因此,本课程的目标是: 介绍信号和图像处理中使用的一些重要算法
本文提供了基于AES的LUT和逻辑门比较S-Box Galois场方法,其芯片尺寸减小和延迟减少,这可以增强性能。数据安全是数字时代的基本要求。现代加密加密技术对于建立安全的通信至关重要。高级加密Satandard(AES)被广泛认为是加密字段最强的加密技术。使用Logic Gates Galios Field Carth Chare操作的三个阶段管道过程,以减少S-Box AES-256的延迟。因此,相应地增加了速度。此外,比较了建议和现有方法的结果。通过Virtex-5 FPGA设备模拟和系统的拟议批准以及Xilinx 14.7软件中的Verilog Code中的设计。
•熟悉计算机视觉-DeepLabcut [1]工具箱。•具有软件中的培训和测试CNN和DNN算法的专业知识,并了解在硬件上部署算法(在FPGA上)。•具有Python的培训,以及对基本信号处理概念的了解•具有Verilog和PCB设计的经验是首选•候选人必须具有自我驱动的态度,调试和解决问题的能力以及独立工作的能力。联系人:请与Mustafa Kanchwala(Mustafaa.kanchwala@mail.utoronto.ca)联系,然后复制到Roman Genov教授(roman@eecg.utoronto.ca)。请随附您的求职信,简历和成绩单(没办法可以)[1] https://www.mackenziemathislab.org/deeplabcut-动物姿势估计的软件包
摘要 在本文中,我们提出了一种用于 (正交频分复用) OFDM 调制器的 HDL IP 生成器。这种调制在许多电信标准中都有使用。但是,每个标准都需要一个特定的 OFDM 调制器,其特点是具有不同的载波数和循环前缀。这些 OFDM 参数差异对 RTL 硬件设计产生了负面影响。这种多样性使得难以重复使用已为涉及不同通信标准的不同项目设计的调制器。为此,作者提出了一种自动 IP HDL 生成器,该生成器能够以 VHDL 或 Verilog 语言生成 OFDM 调制器的 RTL 代码,其中载波数和循环前缀可由用户设置。生成的 IP 具有最大频率、硬件资源和功耗等特点。作者在 XILINX xc7z030 FPGA 上执行了硬件实现。
课程先决条件:基础电气科学。课程目标:了解数字系统的工作原理。应更深入地研究数字逻辑/计算机的各种硬件组件。课程成果 (CO): CO1:应用布尔代数和卡诺图简化数字逻辑电路。CO2:设计和实现基本组合电路,如加法器、减法器、比较器、解码器、编码器、多路复用器和解复用器。CO3:分析各种触发器(SR、D、JK 和 T)的行为并设计顺序电路,如计数器、移位寄存器和序列检测器。CO4:使用状态图和表表示的状态机对数字系统进行建模,并执行状态最小化以实现高效设计。CO5:了解逻辑系列(例如 ECL、CMOS)的原理并使用硬件描述语言(Verilog/VHDL)进行数字系统建模。
ece 498nsu/nsg - 机器学习中的VLSI(2024年秋季)讲师:Naresh Shanbhag Tas:Vignesh Sundaresha:vs49@illinois.edu kaining Zhou:kainingz@kainingz@illinois.edu prereques:ece 313 and Ece 313 and Ece 342或指示: Lecture : M and W 10:00-11:20, ECEB 2022 Instructor Office Hours: Wednesdays 2PM-3PM, CSL 414 TA Office Hours: Thursdays 2pm-4pm, ECEB 2036 Course Description : This course will present challenges in implementing machine learning algorithms in VLSI (silicon) for applications such as wearables, IoTs, autonomous vehicles, and biomedical devices.简单的单阶段分类器将首先讨论,然后是深神网络。将采用有限精确分析来设计定点网络,以最大程度地减少能量,延迟和内存足迹。单阶段和深网的训练算法(后置)将介绍,然后介绍其固定点实现。算法到架构映射技术将在深度学习数字加速器和模拟内存架构中的权衡范围探索。学习行为,定点分析,建筑能量和延迟模型的基础知识将在整个课程中引入正常的时间。还将介绍深度学习系统的硬件(体系结构和电路)实现的案例研究。家庭作业将包括Python和Verilog中的分析和编程练习的混合。nsu部分将完成一个术语项目,涉及在嵌入式硬件平台(例如FPGA/MCU)上实现深网。NSG部分将根据对其感兴趣的特定主题的文献综述撰写一份学期论文,并就该主题进行研究项目。课程评分:NSU部分将在每周的作业(30%)上进行评分,涉及Python和Verilog编程以及设计和分析问题,以及两个中期(30%)和一个学期设计项目(40%)。NSG部分将被评为:25%(家庭作业),25%(两个中期),30%(研究项目)和20%(学期论文)。
和传输线、PCB 和 IC 材料、阻抗匹配、电源分配网络、并行性和串扰。EMI 和 EMC、反射和终端和 IO 焊盘、片上无源器件、ESD 保护管理、IC 和分立元件封装、热考虑、IC 故障和可靠性、微系统封装和应用。实验室教程:使用集总模型的阻抗匹配、使用微带模型的阻抗匹配、EMC 和 TL 不连续性建模和仿真、键合线建模和仿真、电源分配网络建模、并行传输线建模和分析、串扰和噪声分析、EMI/EMC 干扰分析、片上无源器件和角分析。2. RTL 合成和数字后端:HDL(Verilog)编码基础。可合成的 RTL,
摘要 - 物联网(IoT)是Internet的高级版本,其中不仅是连接到Internet的手机和计算机,而且其他电子对象也可以连接到Internet。物联网(IoT)需要使用IPv6协议来满足大量周围事物的需求。在设备之间的这种无线通信方式中所面临的挑战是信息的安全性和个人的隐私。在本文中提出了一种加密方法,该方法利用MD5和AES算法来获得安全和隐私。使用Verilog HDL在ModelsIM 6.5和Xilinx 14.2工具中模拟了这两种算法。两次链接两种算法的链接方法提供了更好的安全性和隐私。将这些算法整合到RFID标签中,可以在周围事物之间存在安全的交流手段,从而为接受社会上的物联网腾出空间。索引术语:物联网; rfid; aes; MD5;机密性;正直; vlsi。
富勒顿加利福尼亚州立大学计算机工程的本科课程(CSUF)为学生提供了基于计算机系统的硬件和软件方面的强大理论和实用背景,以及两者之间工作所需的工程分析,设计和实施技能。课程是基于工程理念,而不是软件更强调硬件。集成到课程中的主题包括数字系统,计算机组织和体系结构,处理器接口技术,使用VHDL和Verilog,高级电子设备以及嵌入式系统设计的HDL设计。该计划要求的选修课程允许学生专门研究关键工程技术和计算机科学领域。该计划还需要一个多学科高级设计项目的两个学期。计算机工程计划旨在以有效和专业的方式发展将设计和分析知识应用于计算机工程实践的能力。