在市场上,我们邀请了比利时焊接研究所,该研究所支持想要采取措施迈向WAAM金属添加剂制造的公司;从机械/腐蚀测试,首次可行性研究,并使工业公司导致将技术整合到您的生产环境中。Wim Verlinde是该主题的专家,他告诉我们该研究所及其项目合作伙伴Ku Leuven和Vives已经与WA AM软件合作,例如MX3D,Sprutcam,Oqton,Powermill(Autodesk),或MX3D,Sualtioned,Ounceeding,Oqton,Oqton,In In In In Waam污染的项目。他们目前正在参与一些标准化项目,这些项目可能使该行业更好地采用该技术,并帮助设计师在物质表征方面更容易做出决策。
铝合金 Rafael Nunes、Koen Faes、Wim Verlinde、Wim De Waele、Matthieu Lezaack、Aude Simar (比利时) 文档 XII-2723-2024/ I-1602-2024/ IV-1639-2024 [43] 0955:DED 线材增材制造资格认证途径 Teresa Melfi、Mark Douglass (美国) 文档 XII-2724-2024/I-1603-2024/IV-1640-2024 [44] 1015:高强度 Al-Mg-Si 合金的线材电弧增材制造 Andreas Pittner、Rene Winterkorn、Cagtay Fabry、Michael Rethmeier (德国) 文档XII-2725-2024/I-1604-2024/IV-1641-2024 [45] 1035:WiiW John Lippold(IIW)演讲 茶歇(1045-1115) 第 6 节:主席:Gunther Mohr [46] 1115 工艺模式和参数对低合金钢丝和电弧定向能量沉积焊道几何形状的影响
近年来,在建立几何与引力与量子纠缠之间的新关系方面取得了重大进展。一个重要的例子是 Ryu-Takayanagi 公式 [1],它在 AdS = CFT 对应关系 [2] 的背景下将共形场论 (CFT) 的纠缠熵与反德西特 (AdS) 空间中极小曲面的面积联系起来。此外,ER¼EPR 猜想 [3] 认为,热场双态 (TFD) 中的纠缠可以通过 AdS 空间中不可穿越虫洞中的测地线全息实现。测地线的长度(横跨 AdS 空间的两个边界)量化了纠缠量 [4]。在更简单的环境中,半经典惠勒虫洞 [5,6] 提供了一个早期的例子。该解的一个重要特征是所涉及的磁场不能以矢量势的形式全局写出。这相当于非精确辛形式,产生量化通量,类似于磁单极子 [7] 。最近,H. Verlinde [8] 通过分析虫洞的配分函数研究了量子力学虫洞的例子。对于具有非精确辛形式的系统,热配分函数变为
其中α是定量时空的每个模型的常数特异性[14 - 17]。此外,全息原理[18-20]和随之而来的协变熵结合[21],这意味着这些距离波动在给定的时空体积中相关。此外,Verlinde和Zurek [22,23]和'T Hooft [24,25]的工作表明,这些相关性可能会延伸到横向上的宏观距离(或等效地,沿着因果钻石的边界[26])。这些理论方法评估了量子波动及其在Hori-Zons上的相关性,并通过将因果钻石的边界确定为视野(特别是Rindler Hori-Zons),可以描述量子时空波动的横向相关性。,Verlinde和Zurek假设热力学特性所规定的能量波动会导致公制在台上通过牛顿电势而与横向相关性的视频波动[22]。'thooft提出,如果地平线的量子波动,黑洞可以服从单位性(例如霍金辐射)是隔离纠缠的[27]。这些理论为波动的垂直两点相关函数提供了具体而几乎相同的预测,作为球形谐波的扩展[22,24,28]。以这种方式得出的相关性分解为球形谐波y m y y m在低L模式中的大部分功能,这激发了以下预测,如上所述,横向相关性在宏观角度分离上延伸到宏观的角度分离。此外,已经提出,CMB中温度波动的角功率谱是这种基本分解在通货膨胀范围上量子波动的球形谐波中的基本分解的表现[29]。重要的是,宏观横向相关性意味着波动在激光束或望远镜孔径的典型直径上是连贯的。如果是这种情况,则通过评估远处对象图像的模糊或退化[16,30]的模糊或降解来设置在量子时空波动上[16,30]。鉴于距离量表的量子时空波动与宏观距离上的相关性和相关性,激光干涉仪对它们具有独特的敏感。因此,对这些波动的最严格约束是由现有的干涉量实验设置的。Ligo,处女座和Kagra协作使用的引力波(GW)干涉仪的设计[31]降低了其对量子时空幻影的潜在敏感性。这是因为它们在手臂中使用Fabry – p´errot腔(或折叠臂,如Geo 600中),这意味着单个光子多次横穿相同的距离。此外,这些仪器的输出的频率低于光线交叉频率。这会导致从单个光线中积累的波动中随机检测到的信号与随后的交叉点的信号平均,从而消除了效果[17]。一个旨在检测量子时空波动的干涉测量实验是Fermilab螺旋表,它由两个相同的共同阶层和重生40 m
出版物和预印本 (69) 辫子群 B 3 的低维不可分解表示,ECR,Y. Ruan,arXiv:2412.08558。 (68) C. Delaney、C. Galindo、J. Plavnik,ECR,Q. Zhang,凝聚态纤维积和 zesting,arXiv:2410.09025。 (67) S.-H. Ng,ECR,X.-G. Wen,从模块化数据中恢复 R 符号,arXiv:2408.02748。 (66) C. Galindo、J. Plavnik,ECR,维度为 p 2 q 2 的积分非群论模块化类别,比利时数学会刊 Simon Stevin 合著,31 (2024) 第 4 期,516–525。 (65) C. Galindo、G. Mora,ECR,《Verlinde 模范畴的辫状 Zestings 及其模数据》,《数学与物理通讯》404(2024):249。 (64) J. Hietarinta、P. Martin,ECR,《常数 Yang-Baxter 方程的解:三维中的加性电荷守恒》,《伦敦数学会志 A 辑数学物理工程科学》480(2024)20230810。 (63) S.-H. Ng,ECR,X.-G. Wen,《最高阶 11 的模数据分类》,arXiv:2308.09670。 (62) ECR,H. Solomon,Q. Zhang,《论近群中心和超模范畴》,即将发表于《当代数学》。arXiv:2305.09108。 (61)P. Martin,ECR、F. Torzewska,《电荷守恒环辫子表示的分类》,《代数杂志》666(2025)878–931。 (60)C. Delaney、C. Galindo、J. Plavnik,ECR、Q. Zhang,《G-交叉辫子 zesting》,《伦敦数学会刊》109(2024),第 1 期,第 1 号,e12816。 (59)ECR,《辫子、运动和拓扑量子计算》,《条件物质物理百科全书》第 2 版,Springer,2024 年。 (58)S.-H. Ng,ECR、Z. Wang、XG. Wen,《从 SL(2,Z)表示重建模块化数据》,《数学物理通讯》 402 (2023),第3期,2465–2545 页。 (57) Z. Feng,ECR,S. Ming,《SU ( N ) k 的辫子子范畴的重构》,《代数杂志》635 (2023),436–458 页。 (56) P. Martin,ECR,《自旋链辫子表示的分类》,arXiv:2112.04533。 (55) C. Damiani、P. Martin,ECR,《从环辫子群中推广 Hecke 代数》,《太平洋数学杂志》323 (2023),第 1 期,31–65 页。 (54) ECR,Y. Ruan、Y. Wang,《SO (2 r ) 2 r 的 Witt 类》,《数学通讯》 Algebra 50:12 (2022),5246-5265。 (53) C. Delaney、C. Galindo、J. Plavnik、ECR、Q Zhang,Braided zesting 及其应用,Comm. Math. Phys. 386 (2021),1-55。 (52) C. Jones、S. Morrison、D. Nikshych,ECR,G 交叉编织融合类别的秩有限性,Transform. Groups 26 (2021),第 3 期,915-927。 (51) P. Bruillard、J. Plavnik、ECR、Q. Zhang,论 8 阶超模类别的分类,J. Algebra Appl. 20 (2021),第 1 期,2140017 (50) S.-H. Ng, ECR, Y. Wang, Q. Zhang,更高的中心电荷和 Witt 群,Adv. Math. 404 (2020) 论文编号 108388。§