使用复杂涡旋矢量光束研究自发拉曼散射 Allison Zhang William A. Shine Great Neck South HS 在本研究中,观察了复杂涡旋矢量光束对纯甲醇和丙酮以及甲醇中的β-胡萝卜素和丙酮中的β-胡萝卜素溶液中的自发和共振拉曼的影响。在甲醇和丙酮中没有看到显著变化,在丙酮溶液中的β-胡萝卜素中看到了非常微小的差异。然而,在甲醇溶液中的β-胡萝卜素中看到了甲醇峰与β-胡萝卜素峰比率的显著变化,在10^-3M浓度下有显著差异。我们的数据表明,复杂涡旋矢量光束引发了能量转移过程,导致甲醇中的β-胡萝卜素和丙酮中的β-胡萝卜素的光谱存在差异。硬脑膜的光学特性 Mihiri Fernando 康涅狄格州柴郡高中 硬脑膜是一种厚膜,由致密不规则的结缔组织构成,包裹着大脑和脊髓。它是保护中枢神经系统的三层膜中最外层的一层。
摘要 .本文探讨了基于“绿色”能源利用的高层建筑节能技术方案,包括:采用风光互补发电装置和垂直轴涡旋风力发电装置,既利用高空水平风流的能量,又利用上升气流的能量。在分析现有技术的基础上,提出了建设风光互补发电装置节约高层建筑能源的一般原则,包括:为保证安全运行和无远程干扰,建议采用具有捕捉风流的空腔的穹顶设计来封闭风力涡轮机;为保证环境友好和便于管理,建议采用模块化设计的各种垂直涡旋风力涡轮机;为高效利用太阳能,建议将光伏电池集成到穹顶的外部结构中;为降低工程造价,建议利用现有的高层建筑。提出一种涡流风力发电装置,可以利用小风和低位热流,减少低频振动,提高风能利用的稳定性和效率,并且易于安装、维护和修理。
可调的涡流梁在各种领域具有相关性,包括通信和传感。在本文中,我们证明了具有二阶非线性敏感性的材料薄膜中非线性自旋轨道相互作用的可行性。值得注意的是,非线性张量可以混合泵场的长界线和横向成分。我们在从心理上观察到了我们从第二次谐波生成过程中的理论预测。尤其是,我们证明非线性薄膜可用于产生第二谐光灯的矢量涡流束,当时被圆形偏振的高斯束激发时。
电子 - 高弹性导体中的电子相互作用会产生类似于经典流体动力学描述的特征的传输特征。使用纳米级扫描磁力计,我们在室温下在单层石墨烯设备中成像了独特的流体动力传输模式 - 固定电流涡流。通过测量具有增加特征大小的设备,我们观察到了当前涡流的消失,因此验证了流体动力学模型的预测。我们进一步观察到,孔和电子主导的运输方式都存在涡流流,但在双极性方面消失了。我们将这种效果归因于涡度扩散长度接近电荷中立性的降低。我们的工作展示了当地成像技术的力量,以揭示异国情调的介绍转运现象。t
o布拉德福德测定法:库马西亮蓝色G-250染料试剂。o用于BCA测定:BCA试剂A和B,CUSO₄解决方案。o用于洛瑞测定法:碱性铜试剂,叶核酸试剂。o用于紫外线吸收:磷酸盐缓冲盐水(PBS)或其他合适的缓冲液。4。微板读取器或分光光度计5。移液器和移液器提示6。测试管或微板井7。卧式(用于UV吸收方法)8。Vortex Mixer 9。孵化器(对于某些测定)10。蒸馏水
将 20 μl 蛋白酶 K 溶液(20 mg/ml,提供)加入到 1.5 ml 微量离心管(未提供)底部。向管中转移 200 μl 样品。向管中加入 200 μl Buffer JBL。涡旋管以彻底混合。在 56 °C 下孵育 10 分钟。短暂旋转以去除盖子内部的任何水滴。向样品中加入 200 μl 冷却的无水乙醇(未提供),涡旋 30 秒以彻底混合样品,然后短暂旋转以去除盖子内部的任何水滴。将混合物小心地转移到 G 型柱(迷你)中,以 13,000 rpm 离心 1 分钟,弃去通过液,将迷你柱重新插入收集管中。
自组装成旋转的凝聚力组是活生物体在较宽的长度尺度上使用的常见策略[1]。在公共中心周围执行圆形轨迹已显示出可以增加对外部扰动的结构,并用于觅食捕食者保护目的的优化[2]。在宏观层面上,例子是鱼类[3]或一群昆虫[4],在微观水平上,细菌菌落中的涡流形成[5]。人为地,通过使用外部磁场来控制胶体微型机器人[6]和纳米颗粒[7]获得了旋转。通过使用光来局部控制Janus颗粒[8,9];或通过使用外部电场来进行圆形隔热[10-14]。涡旋形成的大多数机制都涉及内在的粒子手性[15-17]或吸引力的组合,以确保群体形成和颗粒间比对[18]。涡流形成,在该系统中,代理会积极转向人群[12],具有外部施加的扭矩[19,20],延迟的景点[21,22]或沉积活性液滴[23]。找到导致可控涡流形成的不同且简单的策略仍然是一个挑战。这可以在开发智能活动材料或自组织的微型机器人的开发中找到非常有趣的应用[6,24 - 29]。视觉类型的感知类型将相互作用限制在有限锥体内,将其作为对称轴和尖端处于粒子位置的邻居。基于视觉概念类型的导航策略对于许多生活系统都是固有的,并且导致了非常丰富的羊群行为,例如聚集,铣削或曲折[30 - 38]。这种有限的相互作用领域对于大多数动物来说都是共同的,这意味着已显示导致丰富的集体行为的非偏置相互作用[32,39 - 42]。受到此类生物系统的启发,最小的微观模型已显示为
有毒的涡流是由Jaap de Roode主持的播客,IDAS社区成员讨论了从分子和病原体到人群和大流行病的范围内的传染病,以及介于两者之间的一切。
摘要:我们考虑一种通过二维刺激的拉曼绝热通道(2D搅拌)过程的亚波长超定位和原子质波的图案的方法。最初在其地面上制备的原子与Doughnut形的光学涡流泵束相互作用,而波动波则在空间中具有恒定(顶帽)强度曲线的激光束。梁以违反直觉的时间序列发送,其中stokes脉冲在泵脉冲之前。与行动波和涡流束相互作用的原子通过2D搅拌将其转移到最终状态,而位于涡流束核心的原子保持在初始状态,从而在基态原子的空间分布中形成了一个超鼻纳米尺度原子位。通过数值模拟,我们表明,2D搅拌方法的表现优于建立的相干种群捕获的方法,从而产生了原子激发的更强限制。Gross-Pitaevskii方程的数值模拟表明,使用这种方法可以在被困的Bose-Einstein冷凝物(BEC)中创建2D明亮和深色的孤子结构。该方法允许人们避免由常规方法固有的衍射极限设置的限制,以形成局部孤子,并完全控制纳米分辨率缺陷的位置和大小。