免责声明:SABIC、其子公司和附属公司(各称为“卖方”)的任何销售均严格遵守卖方的标准销售条件(可根据要求提供),除非另有书面约定并由卖方代表签署。尽管本文所含信息是诚意提供的,但卖方不作任何明示或暗示的保证,包括适销性和不侵犯知识产权,也不对这些产品在任何应用中的性能、适用性或针对预期用途或目的的适用性承担任何直接或间接的责任。每位客户必须通过适当的测试和分析来确定卖方材料是否适合客户的特定用途。卖方关于任何产品、服务或设计的可能用途的声明并非旨在或不应被解释为授予任何专利或其他知识产权下的许可。除非另有说明,SABIC 和标有 ™ 的品牌均为 SABIC 或其子公司或附属公司的商标。
对带宽密度和功率效率的需求不断提高,促进了多项研究工作,以开发光学I/O,作为全电动I/O用于高性能和数据密集型计算的替代方案。将光学I/O迁移到XPU/ASIC/FPGA软件包更靠近,可以以节能方式传递必要的带宽。硅光子学(SIPH)非常适合满足该应用的挑战性要求,因为其集成和制造性很高。普遍认为,由于其较小的占地面积和谐振性,微孔调节器(MRM)是带宽密度缩放的关键组成部分,这使其自然地适合密集波长划分多路复用(DWDM)技术,这是满足这些出现的带宽要求的关键[1,2]。光学I/O的其他关键组件包括高速光电探测器,DWDM激光源和共同设计的CMOS电子IC(EIC),可提供所有所需的接口电路(SERDES,驱动程序,MRM Control,TIA等))。
*电子邮件:quynh.l.nguyen@colorado.edu暖密度物质(WDM)代表一个高度兴奋的状态,位于固体,等离子体和液体的交叉点上,而平衡理论无法描述。在实验室中创建时,该状态的瞬态性质以及探测电子与离子之间强烈耦合相互作用的困难,使得在该制度中对物质有完整的理解使其具有挑战性。在这项工作中,通过令人兴奋的〜8 nm铜纳米颗粒,其消融阈值以下的飞秒激光器,我们创建了均匀兴奋的WDM。使用光电子光谱法,我们测量瞬时电子温度并提取纳米颗粒的电子耦合,因为它发生了固体到WDM相变。通过与最先进的理论进行比较,我们确认过热的纳米颗粒位于热固体和等离子体之间的边界,并带有相关的强电子离子耦合。这既可以通过对离子的快速能量损失以及对纳米颗粒体积的强声学呼吸模式引起的电子温度的强烈调节来证明这一点。这项工作展示了一种实验探索WDM外来特性的新途径。在几个研究领域的进展取决于对温度和压力的极端条件下对物质的详细理解。“温暖密集物质”(WDM)制度对应于固体附近的密度,温度从〜10 k到〜10,000 K - 一种无法通过平衡理论描述的制度1,2。wdm是高能密度物理学3,融合能量科学4,行星科学5和恒星天体物理学6,7的许多有趣问题的核心。通过激光技术的进步启用,在过去的十年中,在实验室8-17中制造WDM的能力和询问WDM的能力取得了迅速的进步。但是,尽管有这些突破,但准确表征
在2023 - 24年,WDM继续建立并更新社区合作伙伴关系。我们与计划合作伙伴的关系,例如Yorkton Thelesmen's Club,Kanaweyimik儿童和家庭服务,SaskatchewanLego®用户集团,Central UrbanMétisFederation Inc.和Saskatchewan环境学会,仍然很强大。满足了我们对和解的承诺,如包容性报告:WDM的和解与多样性,与条约专员办公室签署的理解备忘录是这一旅程的重要一步。维持和建立这些牢固的社区关系对于我们的未来至关重要。
通过四波混频产生光对波分复用 (WDM) 这一快速发展的电信领域有着严重影响。WDM 系统使用多个通道(通常为 16 或 32 个)通过光纤发送数据,每个通道都有自己的指定频率。如果两个或多个通道通过四波混频相互作用,则将以新频率产生光功率,但代价是原始通道的功率降低。这种功率损失使得在光纤远端正确检测这些通道中的数字数据变得更加困难,从而更容易出错。更严重的后果是,两个或三个通道之间的 FWM 产生的光的频率与其他分配的通道之一一致。然后,FWM 产生的光会在该通道上充当噪声,导致整个系统性能进一步下降。因此,采取措施避免多通道光通信系统中的四波混频非常重要。通过确保不发生相位匹配,可以最大限度地减少 WDM 系统中的四波混频。这可以通过使用多种方法来实现,包括不均匀间隔通道和在通道以不同速度传播的波长下操作。第 2 节将更详细地讨论此主题。
通过四波混频产生光对波分复用 (WDM) 这一快速发展的电信领域有着严重影响。WDM 系统使用多个通道(通常为 16 或 32 个)通过光纤发送数据,每个通道都有自己的指定频率。如果两个或多个通道通过四波混频相互作用,则将以新频率产生光功率,但代价是原始通道的功率降低。这种功率损耗使得在光纤远端正确检测这些通道中的数字数据变得更加困难,从而更容易出错。更严重的后果是,两个或三个通道之间的 FWM 产生的光的频率与其他分配的通道之一一致。然后,FWM 产生的光会在该通道上充当噪声,导致整个系统性能进一步下降。因此,采取措施避免多通道光通信系统中的四波混频非常重要。通过确保不发生相位匹配,可以最大限度地减少 WDM 系统中的四波混频。这可以通过使用多种方法来实现,包括不均匀地间隔通道和在通道以不同速度传播的波长下操作。第 2 节将更详细地讨论此主题。
• 偏振纠缠 实现 • 宽带和单独信道纠缠 实现 • 下一步 基于纠缠的 QKD 多用户 QKD 全光纤集成、基于 WDM 的纠缠光子源,面向多用户 QKD
硅环谐振器调制器(RRMS)具有减少足迹和功耗并增加波长多路复用(WDM)发射器的调制速度的巨大潜力。但是,RRM的光学特性对制造变化高度敏感,这使它们在设计量生产或大量WDM通道方面具有挑战性。在这项工作中,我们提供了一种RRM设计,该设计经过专门设计和实验验证,以降低对制造变化的敏感性。这包括对抗性过度和不足的暴露(±30 nm横向偏差)的敏感性分析以及耦合部分内蚀刻深度变化(±10 nm深度变化)的敏感性分析。对于我们的设计,偏离目标耦合强度的偏差将两倍提高。使用标准的CMOS兼容过程在Soi晶圆上制造了提议的设备。我们演示了以上灭绝比以上的RRM,OMA更好,即-7 dB(2 V pp)和29 GHz的电光带宽,仅在32 GB/s下显示仅受我们的测量设置的开放式眼睛图。测得的耦合系数与模拟值非常吻合。此外,我们应用了相同的设计修改来实现低掺杂的RRM和基于环的添加 - 滴滴 - 磁材(OADMS)。模拟和测量的耦合系数之间的一致性(我们确定为设备性能可变性的主要来源),进一步证实了我们的设计修改的有效性。这些结果表明,可以利用所提出的设计,以大规模地,尤其是在WDM系统中的大规模制造基于谐振的设备。
摘要:信息的爆炸式增长迫切要求扩展光通信和信息处理的容量。基于轨道角动量的模分复用 (MDM) 被公认为提高单光纤带宽最有前途的技术。为了使其与主波分复用 (WDM) 兼容,宽带等高效相位编码受到高度追求。本文提出了一种基于扭曲液晶和后镜的超宽带反射平面光学设计。光在扭曲双折射介质内的回溯导致消色差相位调制。利用这种设计,展示了单扭曲反射 q 板将白光束转换为多色光学涡旋。进行了琼斯演算和矢量光束表征以分析宽带相位补偿。双扭曲配置将工作波段进一步扩展到 600 nm 以上。它为WDM/MDM兼容元件提供了超宽带和反射解决方案,并可能显著促进超宽带平面光学技术的进步。
在本手稿中,作者提出了一种使用物理噪声源(或称为熵源)进行随机变量进行概率分布计算的方法。这项工作是基于研究小组以前通过WDM和带有相变内存的光子横杆阵列的矩阵乘积乘法的工作。对我的理解,在这里,他们提出适应相同的硬件来操纵“混乱的光”以独立控制输出概率分布的平均值和差异,并使用WDM启用“单次镜头”读数此类概率分布。我想向作者努力详细地详细解释其系统的物理学,并在主要文本和补充材料中以很高的清晰度来解释其系统的物理。尽管我对这种方法的实际好处有保留,但从学术角度来看,这个想法听起来很有趣和新颖。我会向编辑接受次要修订。下面我将列举一些我认为需要改进的几点。