摘要:尽管它们固有的对流及其相关的恶劣天气危害,但仍无法进行风暴上升的量化。上升的代理,例如从卫星造成的高层区域,与恶劣的天气危害有关,但仅与一定程度的总暴风雨上升到达有关。这项研究调查了机器学习模型,即U-NET是否可以巧妙地从单独的三维栅格雷达雷达反射性中巧妙地检索最大的垂直速度及其面积范围。使用模拟的雷达反射性和垂直速度对机器学习模型进行了训练,该模型从国家严重风暴实验室的对流中允许警告搜索系统(WOFS)训练。使用SINH - ARCSINH - 正态分布的参数回归技术适用于U-NETS运行,从而可以对最大垂直速度的最终和概率预测。超参数搜索后的最佳模型提供了小于50%的根平方误差,一个大于0.65的确定系数,以及由WOFS数据组成的独立测试集上的联合(IOU)的相交(IOU)超过0.45。除了WOFS分析之外,使用真实的雷达数据和超级电池内垂直速度的相应的双重多普勒分析进行了案例研究。U-NET始终低估了双重多个多置速度上升速度估计值50%。同时,5和10 m s 2 1上升气流核的面积显示为0.25。尽管上述统计数据并非例外,但机器学习模型可以快速蒸馏3D雷达数据,该数据与最大垂直速度有关,这对于评估风暴的严重潜力可能很有用。
摘要:预报通常会在模型预测中校准其信心。合奏固有地估计预测信心,但通常是不足的,整体扩散与集合均值误差并不密切相关。合奏传播与技能之间的错位激发了“预测预测技能”的新方法,以便预测者可以更好地利用集合指导。我们已经训练了逻辑回归和随机森林模型,以预测NSSL WARN-FORECAST系统(WOFS)的复合反射性预测的技能,这是一个3公里的合奏,可快速更新预测指南,以预测0-6小时。预测技能预测在分析时间在观察到的风暴位置确定的量化区域内的1-,2或3小时提前时间有效。我们使用WOFS分析和预测输出以及NSSL多雷达/多传感器复合反射性,从2017年到2021年的106例NOAA危险天气测试床春季预测实验。我们将预测任务框架为多类问题,在该问题中,预测技能标签是通过平均为多个反射性阈值和验证范围的延长分数技能得分(EFSS)来确定的20%)。初始机器学习(ML)模型对323个预测变量进行了培训;最终模型中的10或15个预测变量只会降低技能。最终模型基本上优于精心开发的持久性和基于传播的模型,并且可以合理地解释。结果表明,ML可以成为指导用户对对流(和更大尺度)合奏预测的有价值的工具。
将于4月29日至5月31日进行2024 HWT春季预测实验(SFE 2024),EFP的基石。这将是面对面和虚拟参与的第二个混合实验。相对于去年的混合实验,SFE 2024将具有类似的格式,所有参与早晨和下午预测活动的参与者以及第二天的模型评估活动。此外,将有一个小型的晚间活动,其中2-4个NWS预测者将发出实验性0-1和1-2 h提前时间预测,直到下午8点CDT。与往年一样,我们的大量合作者贡献了一套新的和改进的实验CAM指导,将在这些预测和模型评估活动中至关重要。这些贡献包括一个合奏框架,称为社区利用统一的合奏(线索; Clark等2018)。2024线索是通过使用通用模型规范(例如,网格间距,模型版本,域大小,后处理等)构建的在可能的情况下,可以在精心设计的受控实验中使用每组贡献的模拟。这种设计将再次使我们能够进行几项针对确定确定性凸轮和凸轮合奏的最佳配置策略的实验。2024线索包括34名成员。SFE 2024还将继续测试WARN-FORECAST系统(WOFS,以下称),该系统产生18人,3公里的网格间隔预测,并将在第8年使用,以发行很短的交付时间和产品。