Birlasoft 首席执行官兼董事总经理 Angan Guha 先生表示:“我们很高兴地报告,本季度我们的收入表现强劲反弹,我们的顶级客户、制造业、BFSI 和 E&U 垂直行业以及数字和数据和 ERP 服务线均实现了广泛增长。按季度计算,我们的 2025 财年第二季度收入按美元计算增长了 2.6%。这得益于一些之前被推迟的项目的增加、更好的客户挖掘以及来自合并交易的增量业务,这些交易使我们获得了钱包份额。我们一直在进行投资以增强我们的技术和领域能力以及合作伙伴关系,我们认为这是未来增长的关键,这些投资已经开始看到一些早期成果,反映在主要行业分析师对我们能力的认可度明显提高。这使我们能够在需求环境复苏时充分利用它所带来的机会。”
将水倒在装满土壤(代表森林砍伐的)的花盆上,并观察到水浸润需要多长时间。要求学生陈述他们所看到的。将水倒在装有植物的花盆上(造林),询问学生注意到什么。他们应该注意到植物拦截了水,叶子上剩下一些水,因此,水到达土壤需要更长的时间。放置塑料板(例如塑料钱包)在只包含土壤的植物锅顶上,这代表了不可渗透的地面/混凝土。将水倒在顶部。学生应该注意到水直接从塑料上延伸,没有一个可以进入土壤。将塑料板倾斜到陡峭的角度进入植物锅中,以表示陡峭的斜坡,然后将水倒在上面。以较浅的角度倾斜木板,以表示温和的浅坡,然后倒水。学生应注意,水从陡峭的斜坡上流出比浅的斜面更快。实验结束后,将测验纸分发出以供学生回答。
• MPC + 多服务器 - Fireblocks 依赖于一种称为多方计算 (MPC) 的加密技术。MPC 的工作原理是要求多方以分散的方式解决需要各方输入秘密信息的问题,而任何一方都不会与其他方共享秘密信息。使用 MPC,私钥采用至少 3 个加密密钥共享的形式。每个密钥共享都经过加密并存储在不同的位置。客户可以控制一个密钥共享,而其他密钥共享则无法被任何人(包括 Fireblocks 和客户)访问。当客户触发请求时,每个密钥共享都会参与分布式和独立的签名过程以验证交易。因此,无论是在第一次创建钱包期间还是在实际签名期间,私钥都不会作为一个整体收集。Fireblocks 还为客户提供了多种云和本地选项来存储密钥共享,以确保即使一个位置受到威胁也能提供额外的安全保障。 MPC 技术与 Fireblocks 的多服务器方法相结合,降低了黑客控制整个私钥以破坏钱包的风险。
摘要:这项研究解决了欧洲议会对意大利番茄加工业的下降的重大关注,该工业对意大利的烹饪遗产和全球市场地位构成威胁。这项研究提供了一种解决方案,该解决方案利用区块链技术来提高番茄供应链中的透明度,可追溯性和运营效率。通过整合固体性,混音IDE,MetAmask钱包和Sepolia testnet,我们提出的模型建立了一个强大的基于区块链的智能合同系统。该系统会积极吸引中耕者,批发商,零售商和最终用户,促进整个供应链中无缝的实时更新。在关键的番茄产生区域(例如Apulia)中实现此模型,利用Mainnet或Hyperledger Fabric等平台旨在稳定该行业。此外,这项研究促进了自动化的智能合约,整合物联网设备和开发分散应用程序(DAPP)。此策略可确保最终用户的透明度,增强有机食品的可用性并减轻污染风险。本研究还建议政府参与升级运输和存储设施,以减少收获后的损失。这项研究为意大利番茄加工行业的可持续管理建立了基础。
InfoStealer仍然是主要的恶意软件类别。这与大多数威胁行为者是出于财务动机的一致,因为威胁行为者可以通过直接从受害者那里窃取资金或将数据销售给黑暗网络和地下市场上的其他威胁参与者,从而使被盗数据(例如信用卡信息或加密货币钱包凭证)获利。尽管一些驾驶此类别的恶意软件家庭从H1 2023转移到H1 2024,例如Vidar,Redline和Lokibot(Windows变体),但一些家庭在今年的前十名中首次亮相,例如新著名的Risepro。最引人注目的开发是Lummac2在H1 2024中没有进入H1 2023的前十名之后的恶意软件系列排名。虽然至少自2022年8月以来,该InfoStealer一直活跃,但Insikt Group最近发现了Lummac2采用了新的TTP。具体来说,Lummac2已开始滥用Steam社区配置文件的用户名来分发C2服务器配置,这是Vidar活动中先前观察到的行为。同时,salital的复兴是在2003年在野外观察到的多态性僵尸网络,突出了传统恶意软件的持续流行率。
有关公司目标指标的声明,包括其目标 ROE、ROTE、效率比率和 CET1 资本比率以及如何实现这些指标,以及有关未来运营费用(包括未来诉讼费用)、效率比率目标和费用节约计划的声明,COVID-19 大流行对其业务、结果、财务状况和流动性的影响,俄罗斯入侵乌克兰和相关制裁及其他事态发展对公司业务、结果、财务状况和流动性的影响,筹资计划以及未来监管资产的数量和构成以及相关收入、预期资产出售、钱包份额增加、计划债务发行、存款和其他资金的增长、资产负债管理和融资策略以及相关的利息费用节约,以及其业务计划的时间和盈利能力,包括新业务(包括交易银行和信用卡合作伙伴关系)或新活动的前景、其在现有业务中增加市场份额的能力以及其从这些计划中获得更持久收入和更高回报的能力,都是前瞻性的陈述,公司的实际结果可能有所不同,可能从这些声明中指出的目标结果中产生重大影响。
通信网络发挥着重要作用,成为当今数字时代的神经系统。网络需要以更高的速度传输大量数据。物联网 (IoT) 设备及其在行业中的使用呈指数级增长。数以百万计的物联网设备嵌入在各种应用中,如智能家居、智能城市、空域设备等。第五代 (5G) 将在全面实现连接人与计算资源(例如传感器、车辆、可穿戴设备等)的物联网方面发挥重要作用。第六代网络在开发低延迟网络方面发挥着重要作用。当今主要的物联网系统使用集中式服务器和存储数据库,而集中式系统的最大问题是相关实体之间缺乏信任和单点故障。为了克服这些问题,分散式架构可用于网络节点之间的对等通信。如今,最流行的分散式系统是区块链,它在提高网络节点之间的信任方面发挥着重要作用。要操作称为区块链的分布式账本,网络对等方必须提供以下功能:钱包服务、存储、路由和挖掘。用于订购交易的密钥由钱包服务提供。存储用于在节点中保存链的副本。路由功能用于块和交易传播,而挖矿功能负责通过解决工作量证明挖矿方案的加密难题来创建新块。一旦矿工解决了这个复杂的加密问题,它就会在网络中发布新区块。网络对等方会在将新区块添加到区块链之前对其进行验证。但是,存在几种具有不同实施设计的区块链模型,每种模型都有优点和缺点。区块链在多个领域都具有巨大潜力,例如无人机系统 1、人工智能 2、雾计算 3、投票方案 4、供应链模型 5、医疗保健 6、假新闻识别 7、预防流行病 8、数字版权管理系统 9 等。然而,区块链与物联网集成的主要问题是可扩展性和吞吐量问题。比特币网络最初使用的区块链使用基于工作量证明的挖矿系统,吞吐量非常低,能耗非常高,无法用于其他应用。然而,区块链的其他几种升级允许高吞吐量,但大多适用于小型网络。很难将它们扩展到大型网络,因此难以实现由大量物联网设备组成的网络。区块链的另一个问题是存储容量,这一点备受质疑。区块链在不断增长,每 10 分钟,区块链的存储量就会增加 1 MB(比特币中每个区块)。该链的副本存储在网络的不同节点中。随着链的增长,这些网络需要越来越多的资源。区块链主要有以下四个重要组成部分:
摘要。当电子钱包由多方转移时,可以通过分散这些方之间的授权分配来提高安全级别。阈值签名方案通过允许多个共同签名者合作创建联合签名来实现此功能。这些共同签名者交互以签署交易,然后确认钱包已转移。然而,如果发生后量子攻击,现有的支持隐私保护加密货币协议中此类授权技术的阈值签名方案 - 如环机密交易 (RingCT) - 将无法提供足够的安全性。在本文中,我们提出了一种新的后量子加密机制,称为基于格的可链接环签名和共同签名 (L2RS-CS),它提供了分布式授权功能来保护电子钱包。我们还形式化了一种新的 L2RS-CS 安全模型,以捕获在区块链加密货币协议(如 RingCT)应用中保护交易的安全和隐私要求。为了解决密钥生成安全问题并支持密钥和签名的压缩,L2RS-CS 结合了分布式密钥生成和可靠的公钥聚合。最后,我们在随机预言模型和基于标准格的 Module-SIS 硬度假设中证明了我们构建的 L2RS-CS 的安全性。
因此,前缀“crypto”是一长串字母和数字,类似于密码。如果私钥丢失,就无法控制货币。这样的例子已经很出名了。九年前,威尔士的一名男子丢弃了一个硬盘,里面有 8,000 比特币的密钥——在市场高峰期价值超过 5 亿美元。他游说当地议会(迄今为止未成功)挖掘垃圾场以找回硬盘。一名男子忘记了一个钱包的密码,里面有 7,002 比特币的密钥(高峰期价值 4.73 亿美元)。2013 年,《连线》杂志开采了 13 个比特币,但销毁了对其密钥的访问权,以免在其新闻报道中产生财务冲突。(比特币的神秘创始人中本聪被认为是 110 万枚从未移动过的比特币的原始所有者。有人怀疑他从未移动过这些比特币,因为他可能已经去世了。)一些加密货币被创建为原始比特币的所谓分叉。这些项目最初是相同的,但后来分裂成不同的加密货币以采用不同的协议。比特币现金、比特币 SV 或比特币黄金都是分叉的例子,它们的价值估计都在
摘要。比特币体系结构在很大程度上依赖于ECDSA Signature方案,该方案被量子对手打破,因为可以从量子多项式时间中的公共密钥中计算秘密密钥。为了减轻此攻击,可以将比特币支付给公共密钥(P2PKH)的哈希。但是,第一个付款揭示了公共密钥,因此附加到其上的所有位硬币都必须同时花费(即剩余的金额必须转移到新的钱包中)。在这种方法中仍然存在一些问题:业主很容易受到签名公开的时间到签名的时间,并承诺将其投入区块链。此外,阈值签名没有等效的机械性。最后,尚未对P2PKH进行正式分析。在本文中,我们用隐藏的公钥对挖掘签名的安全概念进行了正式的安全概念,我们提出并证明了通用转换的安全性,该通用转换将经典签名转换为仅一次可以使用一次的量子后签名。我们将其与P2PKH进行了比较。也就是说,我们的建议依赖于前图像的抵抗力,而不是p2pkh的碰撞阻力,因此可以较短的哈希。补充,我们提出了延迟签名的概念,以解决与公共分类帐使用时匆忙对手的问题,并讨论我们方法的优势和缺点。我们将结果进一步扩展到阈值签名。