本文描述了组织的挑战。对机器人的研究在大学层面是全面的,尤其是当涉及工业机械武器的成本高昂而本文的维护提出了一个有效的机器人平台,并且可以易于访问,这是一个可能的解决方案。 Webot文章带有其他软件,例如Gazbo Coppeliasim Openroberta和Matlab Robotics Toolbox,重点是成为友好用户综合属性的优势,并重视这项研究的重点是Webots在廉价机械部门之上的优势。这使学生可以尝试各种机器人系统和更复杂的工作。本文提供了有关用法的详细信息。使用Python中的机器人控制机器人控制并提供一轮。基本工作和样本提出了与工业学生有关的实验,这表明了网络机的效率,以提高学生对基本机器人概念的理解 div>的结果 div>
Robotics hardware : 2D/3D LiDAR, Depth camera, Sensors & actuators, NVIDIA Jetson, Raspberry, Arduino Robotics design : Solidworks, OnShape, Autodesk Fusion, Altium Designer Robotics software : ROS, Gazebo (Classic & Gz), Webots, Matlab Machine learning : PyTorch, Tensorflow, Reinforcement learning, Immitation learning, Time-series analysis Software development : Python, C++, Docker, Git, Linux, Javascript Web development : React, Node.js, SQL, AWS, Svelte, MongoDB, DynamoDB Language : English (TOEIC 970), Korean ( 한 국 어 능 력 시 험 6 급 ), Indonesian (Native)
摘要:为了提高效率,人机和人机交互必须以多模态的理念进行设计。为了允许在多种不同的设备(计算机、智能手机、平板电脑等)上使用多种交互模式,例如使用语音、触摸、注视跟踪,并集成可能的连接对象,必须在系统的不同部分之间建立有效且安全的通信方式。当使用协作机器人 (cobot) 共享同一空间并在执行任务期间非常靠近人类时,这一点就更为重要。本研究介绍了使用 MQTT 协议的协作机器人在虚拟(Webots)和现实世界(ESP 微控制器、Arduino、IOT2040)中的多模态交互领域的研究工作。我们展示了如何高效地使用 MQTT,为系统的多个实体提供通用的发布/订阅机制,以便与连接的对象(如 LED 和传送带)、机械臂(如 Ned Niryo)或移动机器人进行交互。我们将 MQTT 的使用与之前几项研究工作中使用的 Firebase 实时数据库的使用进行了比较。我们展示了协作机器人和人类如何共同完成“挑选-等待-选择-放置”任务,以及这在通信和人体工程学规则方面意味着什么,包括健康或工业问题(残疾人和远程操作)。
• 制造按比例缩小的机电基元:为测试组装和构造概念,在实验室中构建了约 1:50 的缩小实验硬件平台。最受探索的几何形状之一“巴基球”提供了高效的表面积与体积比,接近球体。对于太空应用,考虑到将预制表面覆层发射到轨道的成本高昂,最好在给定表面积下最大化体积。这些结构基元允许快速进行原型设计、迭代,以及通过几何和磁性对结构粘合的物理和机电特性进行评估。具体而言,瓦片之间的二面角粘合角为巴基球或其他封闭形状建立了适当的壳几何形状,磁体行为由计算代码和每个瓦片中的电力电子设备控制。主要构建两种类型的基元:可自组装成空心结构的壳瓦片,例如巴基球的五边形和六边形瓦片(图 1);和细胞节点(即准六面体)可自组装成填充空间的设计,例如截角八面体线的堆叠。我们使用了多种 3D 打印技术来制造外壳,为了获得更精确的公差,我们优先使用光固化光聚合物打印机。这些瓷砖通过电池和超级电容器组合供电,在我们最新的国际空间站 (ISS) 测试原型上,其规格为 2 到 3 秒内产生 20 W 脉冲(图 2)。一套定制的电子元件(包括传感器、LED、中央处理器和数据存储器)安装在预制的 PCB(印刷电路板)上,这些 PCB 运行 Python 和 C++ 中的自组装算法代码。 • 微重力测试:这些微型平台随后在微重力环境中进行测试,测试范围从抛物线“零重力”飞行中反复出现的 15-20 秒失重期,到亚轨道火箭实验室内三分钟的漂浮,再到国际空间站上为期多天的轨道任务(图 3)。当被释放到这些微重力环境中漂浮时,瓷砖会记录传感器数据,摄像头会捕捉镜头进行分析,为下一系列迭代原型提供信息。这些微重力测试对于全面了解在优化的瓷砖质量与磁场强度比下的自组装行为至关重要。对于国际空间站任务,要么使用密闭实验箱进行纯自主轨道测试,瓷砖必须在其中自行启动,要么在宇航员看管的实验中将瓷砖释放到开放过道中,以获得更大的测试空间。 3 为了补充小规模硬件测试,我们使用了一套机器人模拟软件(特别是 Cyberbotics 的 WeBots)来生成人类居住规模的轨道上自组装行为的数学严格模型。