量子计算利用量子力学现象(如叠加和纠缠),能够以更高的精度、更省时省能的方式解决各种问题。然而,量子算法依赖于多个预处理和后处理任务,这些任务通常需要在传统硬件上执行,例如数据准备、结果分析和参数优化。由于目前可用的噪声中型量子 (NISQ) 设备容易出错,当今大多数量子算法都被设计为所谓的变分量子算法 (VQA) [2]。VQA 交替在量子设备上执行参数化量子电路和通过评估执行结果的质量来经典优化量子电路参数。此外,量子设备不适合许多传统任务,例如数据持久化或可视化,这使得它们成为补充传统计算机的特殊协处理器。因此,量子应用本质上是混合的,必须从经典和量子的角度以及它们的集成的角度进行设计[4]。
它专用于食品和饮料行业、制药行业的工艺或产品用水,或微电子工艺以及对水质要求更高的任何其他行业的工艺用水。
量子算法由所谓的量子电路描述,量子电路是量子门的结构化集合。这些门是量子寄存器上的幺正变换(见第 2.3 节)。每个平台都提供了一组通用的门,可用于实现任何量子算法。图 5 显示了这种电路的一个简单示例。它使用两个量子位(每个表示为一条水平线),两者都初始化为 |0 ⟩ 。经典的两位寄存器 c 用于测量结果,并被表示为一条线。将 Hadamard 门 (H) 应用于量子寄存器位置 0 处的量子位,该门创建两个基态 |0 ⟩ 和 |1 ⟩ 的相等叠加。然后,将受控非门 (CNOT) 应用于量子寄存器位置 0 和 1 处的量子位,其中前者充当控制位,并且当且仅当控制