摘要:中风是全球最致命的疾病之一,强调了早期诊断的关键需求。本研究旨在创建一个两阶段的分类系统,用于中风和非冲程图像,以支持早期临床检测。深度学习(DL)是诊断,检测和及时治疗的基石,是主要方法论。转移学习适应了成功的DL体系结构来解决各种问题,合奏学习结合了多个分类器,以增强结果。这两种技术用于使用中风和正常图像数据集对中风进行分类。在初始阶段,六个预训练的模型是微调的,densenet,Xception和ExcilityNetB2作为表现最佳的人,分别达到98.4%,98.4%和98%的验证精度。这些模型在整体框架中充当基础学习者。加权的平均合奏方法将它们结合在一起,从而在保留的测试数据集中获得了99.84%的精度。这种方法表现出对中风检测的希望,这是一种威胁生命的状况,同时也证明了合奏技术在增强模型性能方面的有效性。
交通事故仍然是死亡,伤害和高速公路严重中断的主要原因。理解这些事件的促成因素对于提高道路网络安全性至关重要。最近的研究表明,预性建模在洞悉导致事故的因素方面具有效用。但是,缺乏重点放在解释复杂的机器学习和深度学习模型的内部工作以及各种特征影响事故词典模型的方式。因此,这些模型可能被视为黑匣子,而利益相关者可能不会完全信任他们的发现。这项研究的主要目的是使用各种转移学习技术创建预测模型,并使用Shapley值对最有影响力的因素提供见解。预测合格中伤害的严重程度,多层感知器(MLP),卷积神经网络(CNN),长期短期记忆(LSTM),残留网络(RESNET),EfficityNetB4,InceptionV3,InceptionV3,极端的Incep-Tion(Xpection)(Xpection)(Xpection)和Mobilenet和Mobilenet。在模型中,MobileNet显示出最高的结果,精度为98.17%。此外,通过了解不同的特征如何影响事故预测模型,研究人员可以更深入地了解导致事故的造成的范围,并制定更有效的干预措施以防止发生事故。
简介:这项工作的目的是使用计算智能技术对磁共振成像(MRI)图像进行检测和分类。材料和方法:3264个MRI脑图像的数据集包含4类:未指定的神经胶质瘤,脑膜瘤,垂体和健康的大脑,在本研究中使用。Twelve convolutional neural networks (GoogleNet, MobileNetV2, Xception, DesNet-BC, ResNet 50, SqueezeNet, ShuffleNet, VGG-16, AlexNet, Enet, EfficientB0, and MobileNetV2 with meta pseudo-labels) were used to clas- sify gliomas, meningiomas, pituitary tumours, and healthy brains找到最合适的模型。典范包括图像预处理和超参数调整。根据每种类型的脑肿瘤的准确性,精度,召回和F量表来评估每个神经网络的性能。结果:实验结果表明,MobilenetV2循环神经网络(CNN)模型能够以99%的精度,98%的召回率和99%的F1得分来诊断脑肿瘤。另一方面,验证数据分析表明,CNN模型Googlenet在CNN中的精度最高(97%),并且似乎是脑肿瘤分类的最佳选择。结论:这项工作的结果强调了人工智能和机器学习对脑肿瘤预测的重要性。此外,这项研究达到了迄今为止脑肿瘤分类中最高的确定性,这也是唯一一项同时比较许多神经网络的性能的研究。
20-28。[16] Bakeer, HMS 和 SS Abu-Naser (2019)。“一种用于学习托福的智能辅导系统。”《国际学术教学研究杂志》(IJAPR)2(12): 9-15。[17] Bakr, MAHA 等人 (2020)。“使用 JNN 预测乳腺癌。”《国际学术信息系统研究杂志》(IJAISR)4(10): 1-8。[18] Baraka, RF 和 SS Abu-Naser (2023)。“使用 Just 神经网络预测书籍评分。”《国际工程与信息系统杂志》(IJEAIS)7(9): 14-19。[19] Barhoom, AM 和 SS Abu-Naser (2018)。“黑胡椒专家系统。”《国际学术信息系统研究杂志》(IJAISR)2(8): 9-16。 [20] Barhoom, AM 和 SS Abu-Naser (2022)。“使用深度学习诊断肺炎。”《国际学术工程研究杂志 (IJAER)》6(2): 48-68。[21] Barhoom, AM 等人 (2019)。“使用人工神经网络预测泰坦尼克号幸存者。”《国际学术工程研究杂志 (IJAER)》3(9): 8-12。[22] Barhoom, AM 等人 (2022)。“使用深度学习-vgg16 算法检测和分类骨骼异常。”《理论与应用信息技术杂志》100(20): 6173-6184。[23] Barhoom, AM 等人 (2022)。“用于上骨异常分类的深度学习-Xception 算法。” 《理论与应用信息技术杂志》100(23):6986-6997。[24] Barhoom, AM 等人 (2022)。“使用一组机器和深度学习算法预测心脏病。”《国际工程与信息系统杂志》(IJEAIS) 6(4):1-
近年来,卷积神经网络(CNN)凭借其出色的特征提取能力在图像识别、工业故障检测、无人驾驶等领域得到了广泛的应用。然而,传统的 CNN 模型 [1, 2, 3] 具有大量的参数,难以部署在资源受限的嵌入式设备上。因此,随着 CNN 的应用需求不断增加,如何简化 CNN 模型并有效地将其部署到嵌入式设备上成为了新的研究热点。使用轻量级 CNN 模型,例如 Xception [4]、MobileNet [5, 6, 7] 和 ShuffleNet [8],是在准确率损失不大的情况下显着减少参数数量的有效方法。此外,使用低比特数据量化方法[9,10,11]可以将32比特数据量化为8比特甚至更低,大大减小了CNN模型的大小。因此,结合这两种方法对轻量级CNN模型进行低比特数据量化,为实现CNN模型提供了一种计算友好的算法解决方案。在各类嵌入式设备中,FPGA在功耗和灵活性之间提供了更好的权衡,成为实现CNN的一种有吸引力的解决方案。然而,轻量级CNN模型包含多种核大小,这对基于FPGA的CNN加速器的设计提出了挑战。大多数现有设计[12,13,14,15,16,17,18,19,20,21]可以有效处理具有某些特定核大小的卷积。然而,
脉搏率(PR)是评估一个人健康的最重要标记之一。随着对长期健康监测的需求不断增长,使用成像光电学(IPPG)对非接触式PR估计的关注非常关注。这种非侵入性技术基于肤色细微变化的分析。尽管可以改善IPPG,但现有算法容易受到较不受约束的场景(即头部移动,面部表情和环境条件)。在本文中,我们提出了一个新颖的端到端时空网络,即X-ippgnet,直接从面部视频记录中直接进行瞬时PR估计。不像大多数现有系统一样,我们的模型从头开始学习IPPG概念,而无需结合任何先验知识或通过提取血液体积脉冲信号的提取。受Xception网络体系结构的启发,颜色通道解耦用于学习其他照相学信息信息,并概念地降低计算成本和内存重新质量。此外,X-ippGnet可以从短时间窗口(2秒)中预测脉搏率,该脉冲率具有较高且明显的脉搏率的优点。实验结果揭示了在所有条件下的高性能,包括头部运动,面部表情和肤色。我们的AP-PRACH明显优于三个基准数据集上的所有当前最新方法:MMSE-HR(MAE = 4。10; RMSE = 5。32; r = 0。85),ubfc-rppg(Mae = 4。99; RMSE = 6。26; r = 0。67),mahnob-hci(Mae = 3。17; RMSE = 3。93; r = 0。88)。
摘要:DeepFake已成为一项新兴技术,近年来影响网络安全的非法应用。大多数DeepFake检测器都利用基于CNN的模型(例如Xception Network)来区分真实或假媒体;但是,它们在交叉数据集中的表现并不理想,因为它们在当前阶段遭受过度的苦难。因此,本文提出了一种空间一致性学习方法,以三个方面缓解此问题。首先,我们将数据增强方法的选择提高到5,这比我们以前的研究的数据增强方法还多。具体来说,我们捕获了一个视频的几个相等的视频帧,并随机选择了五个不同的数据增强,以获取不同的数据视图以丰富输入品种。其次,我们选择了Swin Transformer作为特征提取器,而不是基于CNN的主链,这意味着我们的方法并未将其用于下游任务,并且可以使用端到端的SWIN变压器对这些数据进行编码,旨在了解不同图像补丁之间的相关性。最后,这与我们的研究中的一致性学习结合在一起,一致性学习能够比监督分类确定更多的数据关系。我们通过计算其余弦距离并应用传统的跨膜损失来调节这种分类损失,从而探索了视频框架特征的一致性。广泛的数据库和跨数据库实验表明,弹药效果可能会在某些开源的深层数据集中产生相对良好的结果,包括FaceForensics ++,DFDC,Celeb-DF和FaceShifter。通过将我们的模型与多种基准模型进行比较,我们的方法在检测深冰媒体时表现出相对强大的鲁棒性。
阿尔茨海默病是一种常见的痴呆症,可导致认知功能和日常生活活动出现严重问题。尽管目前还没有阿尔茨海默病的明确治疗方法,但早期诊断对于减缓可能出现的不利状况和改善生活质量非常重要。由于人工智能技术的发展及其在不同领域的持续应用,机器学习技术有可能在阿尔茨海默病的检测中发挥重要作用。特别是基于深度学习的方法,它们能够自动从复杂模式中提取模式,在这一领域很有前景。最近的研究表明,使用深度学习模型对图像进行阿尔茨海默病检测正变得越来越普遍。除了有助于疾病的早期诊断外,这些模型还显示出通过分析磁共振图像中的症状来检测疾病的不同阶段的潜力。这些发展使得为患者开发更有效的治疗方法成为可能。然而,还需要更多的研究来评估这些技术在临床应用中的有效性和安全性。本研究使用 MobileNetV2、InceptionV3、Xception、Vgg16 和 Vgg19 模型对公开共享的阿尔茨海默病数据集进行了疾病诊断分类研究,该数据集包含 6400 个不同的样本和 4 个不同的类别。MobileNetV2 模型的准确率计算为 99.92%。将本研究中使用的模型的性能与文献中的类似研究进行了比较,并根据不同的指标报告了它们的性能。在使用的五种不同模型中,MobileNetV2 的准确率最高,为 99.92%。结论是,实验研究中使用的架构通常比文献中的类似研究产生更好的结果。
1 美国国立卫生研究院国家癌症研究所癌症研究中心,10 号楼,马里兰州贝塞斯达,20892,美国。2 爱琴海大学计算机工程系,伊兹密尔博尔诺瓦,35100,土耳其。3 不列颠哥伦比亚大学医学院,317 - 2194 健康科学商城,温哥华,BC V6T 1Z3,加拿大。摘要 神经胶质瘤是最常见的脑肿瘤之一。早期检测和分级神经胶质瘤对于提高患者的生存率至关重要。计算机辅助检测 (CADe) 和计算机辅助诊断 (CADx) 系统是必不可少的重要工具,可提供更准确、更系统的结果,从而加快临床医生的决策过程。通过利用各种深度学习模型(例如 CNN)和迁移学习策略(例如微调),图像分类的性能结果提高了准确性,并且提高了有效性,尤其是对于具有相似性的新型大规模数据集。在本文中,我们介绍了一种新方法,该方法结合了机器、深度学习和迁移学习方法的变体,用于在多模态脑肿瘤分割 (BRATS) 2020 数据集上对脑肿瘤(即神经胶质瘤)进行有效的分割和分级。我们将流行且高效的 3D U-Net 架构应用于脑肿瘤分割阶段。我们还利用 23 种不同的深度特征集组合和基于 Xception、IncResNetv2 和 EfficientNet 的机器学习/微调深度学习 CNN 模型,在肿瘤分级阶段使用 4 种不同的特征集和 6 种学习模型。实验结果表明,该方法在 BraTS 2020 数据集上对基于切片的肿瘤分级的准确率为 99.5%。此外,我们的方法与最近的类似研究相比具有竞争力。关键词:神经胶质瘤;神经胶质瘤等级;分割;特征提取;深度学习、集成学习、MRI 分类
项目详情:机器学习:通常,只需根据生物细胞的形状即可预测其状态。人类尝试这样做既耗时又容易受到无意识偏见和人为错误的影响。相反,人们更喜欢自动计算方法,而这正是机器学习可以实现的。我们的初步结果已经开发出一种高精度(>93%)的小胶质细胞方法。这篇博士论文的目的是改善这一点。应用:小胶质细胞是大脑中的常驻免疫细胞。它们采用多种表型来控制大脑的免疫反应,包括吞噬有害物质和释放信号化学物质。科学界在过去五十年中天真地将小胶质细胞分为两种类型。然而,最近的研究(包括我们的合作者)带来了革命性的想法,即小胶质细胞状态是一个连续体。重要性:拥有一种可以准确确定小胶质细胞状态的诊断工具至关重要。首先,小胶质细胞在抑郁症和精神分裂症等精神健康状况中起着至关重要的作用。其次,小胶质细胞在神经退行性疾病(包括运动神经元、帕金森氏症和阿尔茨海默氏症)中很重要。第三,这种工具可用于脑外科手术期间,以持续监测脑细胞状况。第四,这项工作可以扩展到其他巨噬细胞,如肺部的肺泡巨噬细胞。 项目关键目标:(1)开发一种机器学习方法来自动分类小胶质细胞状态(2)确定该方法如何依赖于图像大小、成像条件和不完善的训练数据(3)优化该方法以实时运行并同时在多个细胞上运行 方法:这项博士学位将利用我们与 Kate Harris 博士(纽卡斯尔)、Ian Wood 教授(利兹)和 Andrew Dick 教授(布里斯托尔)合作提供的机会。它将采用一种真正的多学科方法研究小胶质细胞状态,包括机器学习、图像分析和延时成像。这将使学生学习到非常理想的定量和实验技能组合,从而为未来的职业前景带来良好的前景。项目计划:(1)创建新的机器学习方法,特别是卷积神经网络(CNN),使用我们现有的 >20,000 个小胶质细胞的大型数据集自动对小胶质细胞状态进行分类。这将涉及探索多个数据集和 CNN 架构(VGG-16、ResNet、Inception、Xception、DenseNet、ResNeXt-50)。(2)设计图像分析软件,自动从原始显微镜图像中分割细胞。这将基于我们小组现有的代码,并将为机器学习生成输入数据。相关技术将包括形态学操作、边缘检测、距离变换和分水岭变换。(3)培养和成像人类小胶质细胞 HMC3 细胞系,以生成更多数据用于训练 CNN 并测试机器学习模型的准确性。细胞