此预印本的版权持有人(该版本发布于2023年5月12日。; https://doi.org/10.1101/2023.01.27.525966 doi:biorxiv Preprint
摘要:斑马鱼已成为研究人类许多生理和病理生理过程的流行模型。近年来,它在代谢性疾病(即肥胖和糖尿病)的研究中迅速出现,因为葡萄糖和脂质稳态的调节机制和代谢途径在纤维中是高度保守的。斑马鱼也被广泛用于神经科学领域,以研究由于成年期间神经干细胞的高维持和活性而导致的大脑可塑性和再生机制。最近,大量证据表明,代谢性疾病可以改变脑稳态,导致神经炎症和氧化应激,并导致神经发生降低。迄今为止,这些病理代谢疾病也是认知功能障碍和神经退行性疾病发展的风险因素。在这篇综述中,我们第一个旨在描述斑马鱼中建立的主要代谢模型,以证明它们与各自的哺乳动物/人类的相似之处。然后,在第二部分中,我们报告了代谢性疾病(肥胖和糖尿病)对脑体内平衡的影响,特别关注血脑屏障,神经障碍,炎症,氧化应激,认知功能和大脑形象。最后,我们提出了探索有趣的信号通路和调节机制,以便更好地了解代谢性疾病如何对神经干细胞活性产生负面影响。
抽象的动物色素模式在行为中起着重要作用,在许多物种中,红色是伴侣选择中个体质量的诚实信号。在Danio鱼类中,有些物种会形成红细胞,含有红色酮心反非的色素细胞,而其他物种,例如斑马鱼(D。Rerio),只有黄色的黄蜂。在这里,我们使用Pearl Danio(D。albolineatus)评估了红细胞的发育起源及其差异机制。我们表明,白化芽孢杆菌的鳍中的红细胞与黄蜂共有一个共同的祖细胞,即使分化后,也可以在细胞命运中保持可塑性。我们进一步确定了将红色颜色赋予红色色彩的主要酮类苯酚,并使用反向遗传学来确定这些细胞分化和维持所需的基因。我们的分析是定义Danio中红色介导的红色色彩发展的机制的第一步,并揭示了与鸟类红色机制的惊人相似之处。
了解神经元如何在大脑中相互作用以控制动物行为是神经科学的核心目标之一。荧光显微镜和基因编码钙指示剂的最新发展促成了斑马鱼全脑成像方法的建立,该方法以单细胞分辨率记录整个大脑体积的神经活动。全脑成像的开创性研究使用了定制的光片显微镜,其操作依赖于全球不可用的商业开发和维护的软件。因此,在研究界传播和开发这项技术一直具有挑战性。在这里,我们介绍了 PyZebrascope,这是一个开源 Python 平台,旨在使用光片显微镜对斑马鱼的神经活动进行成像。PyZebrascope 具有直观的用户界面,并支持全脑成像的基本功能,例如两个正交激发光束和眼睛损伤预防。其相机模块可以处理从相机采集到文件写入高达 800 MB/s 的图像数据吞吐量,同时保持稳定的 CPU 和内存使用率。其模块化架构允许包含用于显微镜控制和图像处理的高级算法。作为概念验证,我们实施了一种新颖的自动算法,通过将激发光束精确对准图像焦平面来最大化大脑中的图像分辨率。PyZebrascope 可以在虚拟现实环境中对鱼类行为进行全脑神经活动成像。因此,PyZebrascope 将有助于在神经科学界传播和开发光片显微镜技术,并加深我们对动物行为过程中全脑神经动力学的理解。
生态系统和卫生部门n°ID:111D24_相关性是为了促进使用斑马鱼模型的科学研究的不同机构与参与科学研究的不同机构和大学之间的经验的比较和共享。本次会议是将来自各个研究领域的专家汇集在一起的重要机会,从而可以通过使用该模型机构获得知识,方法和结果的交换。该活动的主要目的是建立一个在广泛学科中使用斑马鱼模型的实验室的协作网络。该网络旨在根据一种健康方法鼓励综合愿景,该方法认识到人,动物和环境健康之间的互连。通过这种跨学科的合作,参与者将有机会提出研究项目,讨论和验证新的实验方法,并为在科学领域使用斑马鱼使用共同准则的定义做出贡献。Zebone网络的目的和目标具有在国家一级合并和扩展跨学科关系的最终目标。该计划希望创建一个研究实验室之间的对话和持久协作的平台,促进一种有利于科学创新的协同方法,并在斑马鱼模型上不同领域的知识进步。多亏了这个网络,希望加速新的研究方法的发展,并为整个科学界和社会做出重大贡献。
。CC-BY-NC-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2022 年 2 月 15 日发布。;https://doi.org/10.1101/2022.02.13.480249 doi:bioRxiv 预印本
近年来,单细胞基因组学的新发展通过实现对胚胎细胞类型和分化轨迹的系统分析,改变了发育生物学。正在进行的实验和计算方法开发旨在揭示基因调控机制,并提供有关发育细胞命运决定的更多时空信息。在这里,我们讨论单细胞基因组学的最新技术发展以及生物学应用,特别关注发育细胞命运决定的分析。虽然这里描述的方法通常适用于广泛的模型系统,但我们将重点讨论斑马鱼的应用,斑马鱼已被证明是建立单细胞基因组学新方法的特别强大的模型生物。
摘要 1 型糖尿病 (T1D) 是一种以破坏产生胰岛素的 β 细胞为特征的疾病。目前,我们在如何逆转或预防 1 型糖尿病患者的 β 细胞损失方面仍然存在重大差距。之前对小鼠的研究发现,使用二氟甲基鸟氨酸 (DFMO) 药物抑制多胺生物合成可保留 β 细胞功能和质量。同样,用酪氨酸激酶抑制剂甲磺酸伊马替尼治疗非肥胖糖尿病小鼠可逆转糖尿病。这些动物研究的有希望的发现促成了两项独立临床试验的启动,这两项试验将重新利用 DFMO (NCT02384889) 或伊马替尼 (NCT01781975) 并确定对糖尿病结果的影响;然而,这些药物是否直接刺激 β 细胞生长仍然未知。为了解决这个问题,我们使用了斑马鱼模型系统来确定药理学对 β 细胞再生的影响。在诱导β细胞死亡后,用DFMO或伊马替尼处理斑马鱼胚胎。两种药物均未改变全身生长或外分泌胰腺长度。用伊马替尼处理的胚胎对β细胞再生没有影响;然而,令人兴奋的是,DFMO增强了β细胞再生。这些数据表明,药物抑制多胺生物合成可能是刺激糖尿病环境中β细胞再生的一种有前途的治疗选择。
摘要:斑马鱼是一种成熟的研究生物,为我们理解脊椎动物组织和器官的发育做出了许多贡献,但我们对调节性腺发育、性别和生殖的基因的理解仍然存在重大差距。与许多器官(如大脑和心脏)在发育的最初几天内形成的发育不同,斑马鱼性腺直到幼虫阶段(受精后 ≥ 5 天)才开始形成。因此,正向遗传筛选已确定了极少数性腺发育所需的基因。此外,识别性腺中表达基因的大量 RNA 测序研究没有足够的分辨率来定义可能在这些器官的发育和功能中发挥重要作用的小细胞群。为了克服这些限制,我们使用单细胞 RNA 测序来确定从幼年斑马鱼卵巢中分离的细胞的转录组。这得到了 10,658 个生殖细胞和 14,431 个体细胞的图谱。我们的生殖细胞数据代表了从生殖系干细胞到早期减数分裂卵母细胞的所有发育阶段。我们的体细胞数据代表了所有已知的体细胞类型,包括卵泡细胞、卵泡膜细胞和卵巢基质细胞。进一步分析发现,在这些广义的细胞类型中,存在数量出乎意料的细胞亚群。为了进一步确定它们的功能意义,我们确定了这些细胞亚群在卵巢内的位置。最后,我们使用基因敲除实验来确定 foxl2l 和 wnt9b 分别对卵母细胞发育和性别决定和/或分化的作用。我们的结果揭示了斑马鱼卵巢发育和功能的新见解,转录组谱将为未来的研究提供宝贵的资源。
摘要 基因补偿是一个引人注目的生物学概念,它解释了生物体在基因变异因突变而中断时,如何保持其适应性和生存力。然而,基因补偿的潜在机制仍然无法解决。当敲除介导和敲低介导的表型存在差异时,基因补偿的初始概念已在模型生物中得到研究。在斑马鱼模型中,一些研究报告称,斑马鱼突变体并没有表现出与斑马鱼变体相同的基因所显示的严重表型。斑马鱼突变体而非变体中的这种现象是由于基因补偿的反应造成的。2019 年,两项令人惊叹的研究部分揭示了基因补偿可能是通过调节 NMD 和/或携带 PTC 的 mRNA 与突变斑马鱼的表观遗传机制协作来上调补偿基因所触发的。在这篇评论中,我们想更新遗传补偿研究的最新进展和未来前景,其中包括时间依赖性参与的假设,并解决敲除介导和敲低介导之间的差异,以研究基因