超导高熵合金(HEAS)是一类新型的超导体,具有电子设备的应用。在这里,我们研究了MO合金对具有组成(TANB)1- X(ZRHFTI)X mo y的高熵纤维超导性能的影响。对于近乎摩尔的组成,将晶粒晶粒转化为具有几纳米尺寸的大小的无定形聚集,形成了晶体/玻璃纳米复合材料。在晶体和无定形的HEAS中,成分原子均表现出均匀的分布。受熵影响的相地层抑制了HEAS中的超导转变,从而扩大了正常的超导过渡状态,并抑制了零耐抗性的临界温度至较低的恒定值约为2.9 K.
摘要:最近的计算研究预测了许多新的三元氮化物,揭示了这一尚未充分探索的相空间中的合成机会。然而,合成新的三元氮化物很困难,部分原因是中间相和产物相通常具有较高的内聚能,会抑制扩散。本文,我们报告了通过 Ca 3 N 2 和 M Cl 4(M = Zr、Hf)之间的固态复分解反应合成两个新相,钙锆氮化物(CaZrN 2 )和钙铪氮化物(CaHfN 2 )。虽然反应名义上以 1:1 的前体比例通过 Ca 3 N 2 + M Cl 4 → Ca MN 2 + 2 CaCl 2 进行到目标相,但以这种方式制备的反应会产生缺钙材料(Ca x M 2 − x N 2 ,x < 1)。高分辨率同步加速器粉末 X 射线衍射证实,需要少量过量的 Ca 3 N 2 (约 20 mol %) 才能产生化学计量的 Ca MN 2 。原位同步加速器 X 射线衍射研究表明,名义化学计量反应在反应途径早期产生 Zr 3+ 中间体,需要过量的 Ca 3 N 2 将 Zr 3+ 中间体重新氧化回 CaZrN 2 的 Zr 4+ 氧化态。对计算得出的化学势图的分析合理化了这种合成方法及其与 MgZrN 2 合成的对比。这些发现还强调了原位衍射研究和计算热化学在为合成提供机械指导方面的实用性。■ 简介
1 纽约纪念斯隆凯特琳癌症中心放射学系;2 纽约威尔康奈尔医学院放射学系;3 纽约纪念斯隆凯特琳癌症中心医学物理学系;4 纽约纪念斯隆凯特琳癌症中心生物统计学和流行病学系;5 纽约纪念斯隆凯特琳癌症中心医学系;6 纽约威尔康奈尔医学院医学系;7 俄勒冈州尤金赛默飞世尔科技公司生物科学部;8 纽约纪念斯隆凯特琳癌症中心分子药理学项目;9 加利福尼亚州纽波特比奇霍格家族癌症研究所分子成像与治疗系;10 加利福尼亚州洛杉矶南加州大学放射学和转化基因组学系;纽约州纽约市亨特学院化学系
3级自动驾驶汽车可能会受益于老年人和年轻的驾驶员,但他们对技术的看法仍在研究中。我们提出了一个问卷和焦点小组,以检查年龄段的老年驾驶员的信任,安全性和实用性是一个异质年龄段(60-80岁分为四个年龄段)及其较年轻(22-25岁)的驾驶员,大约3级和非驾驶相关的相关任务(NDRTS)。60-65组大部分是对3级的依赖,而76-80组将其视为保持移动的机会。但是,所有团体都渴望与NDRT互动,但是,在获得信任之前,他们不会参与高度分心的任务,例如阅读。76-80小组强调了设计的重要性接管其物理和认知能力下降的要求。在这项研究中,我们强调了考虑3级汽车HMI设计中与年龄相关的需求的重要性。
过渡金属牙花会由于其独特的晶体结构而组成了许多有趣的超导体,这是由胎原子的化学键合引起的[1-6]。最近,发现带有配方SC 6 MTE 2的三元扫描库是一个新的D-电子超导体家族,在各种过渡金属元件的情况下表现出超导性(M = FE,CO,CO,NI,RU,RU,RH,RH,RH,OS和IR)[7]。在M = Fe中实现T C = 4.7 K的最高临界温度,而T C的M = Fe,Co和Ni的顺序下降。SC 6 MTE 2具有M = 4 d和5 d过渡金属的材料显示较低的t c 〜2 k。根据第一原理计算,Fermi Energy E F处的SC 6 Fete 2的电子状态主要由SC和Fe 3 D轨道组成[7]。在其他M情况下,M D轨道的贡献不如SC 6 FETE 2中的Fe 3 D轨道的贡献不那么重要,这表明Fe原子的3 d电子在实现SC 6 Fete 2中最高的T C中起着重要作用。相比之下,SC 6 MNTE 2,其中Mn 3 D电子在E f时与SC 6 Fete 2相同的电子状态显着促进了电子状态,并未显示超导性,这可能是由于Mn 3 D电子的强磁性引起的[7]。因此,SC 6 MTE 2显示了一个特征M的依赖性,但是当Scandium被其他元素取代时,尚不清楚出现哪种电子特性。
afnia(HFO 2)基于硅河道铁电场效应晶体管(HFO 2 Si-fefet)已对非挥发性记忆进行了广泛的研究[1-7],这要归功于掺杂的hfo 2 [8]中发现铁电性的。HFO 2 Si-fefet的存储窗口(MW)大约是文献报告中的1-2 V [9-12],该窗口不满足其对在多位数存储单元中应用的要求。最近,通过优化铁电层和栅极侧层间层[13],在SI-FEFET中报告了最高10.5 V的大型MW [13]。但是,它没有给出层中层的材料。及其物理机制仍未报告和澄清。为了改善MW,通常有两种方法。当前方法之一主要集中于减少掺杂的HFO HFO 2铁电和Si通道之间的底部SIO X互层中的电场,从而抑制了在掺杂的HFO 2 /SIO X界面处的电荷捕获[14-17]。另一种方法侧重于改进SIO X数量。但是,仍然缺乏改善Si FeFet MW的有效方法。
在这项研究中,由RF磁铁溅射以不同的ZR/[ZR + Ti]比率而沉积的压电能量收割机(PEHS)是基于外部PB(ZR,Ti)O 3(PZT)薄膜制造的。对于与微电力系统的兼容性,外部PZT薄膜被沉积在SI底物(PZT/SI)上。形态相边界(MPB)的组成范围为0.44≤zr/[Zr + Ti]≤0.51的外观PZT/Si的0.51,其比散装PZT的宽度要广泛得多。同时,使用Unimorph Cansilever方法,通过直接和逆向压电效应评估有效的横向压电系数(| E 31,F |)值。在组成中,Zr/[Zr + Ti]的菱形统治MPB(MPB-R)= 0.51表现出直接| E 31,f |在这项研究中,10.1 C m -2和相对介电常数(𝝐 r)为285,最大程度的功绩为40 GPA。另一方面,最大匡威| E 31,f |从Zr/[Zr + Ti]的四方优势MPB(MPB-T)测量14.0 C m-2的2。在共振频率下,MPB-T在加速度为3 m-1 s-2的加速度下,高输出功率密度为301.5μW-1 /(cm 2 g 2),这对于高表现PEH应用非常有前途。
我们报告了在5 nm厚的无定形无代数超导式RE X Zr(X≈6)(A-Rezr)薄纤维中,使用较小的型号的固定温度参数空间的形成,该区域在5 nm厚的无定形超导超导中的形成,使用较低的扫描型隧道隧道型仪表仪(STSSSS)组合。涡流液体的性质与常规液体显着不同。分析作为时间函数捕获的一系列STS图像,我们观察到,固定和干预互动的相互作用会产生非常不均匀的状态,其中一些涡旋保持静态,而另一些涡流则在其中形成旋转网络的旋转网络,而涡流是移动的。随着温度或磁场的升高,该网络变得更加密集,最终涵盖了所有涡流。我们的结果提供了对固定涡流液体的性质以及超薄超导薄膜运输特性中的某些特殊性的关键见解。
b'功能陶瓷对于电池的可扩展生产固体电解质至关重要。li-garnet li 7 la 3 Zr 2 O 12 D(LLZO),尤其是其立方相(Cllzo),由于其高LI + conductitivity和广泛的电化学稳定性窗口而引起了人们的注意。但是,高烧结温度引起了对阴极界面稳定性,生产成本和可扩展制造能源消耗的担忧。我们显示了一种替代\ Xe2 \ x80 \ x9csinter-free \ xe2 \ x80 \ x9d途径,以稳定Cllzo作为其烧结温度的一半胶片。具体而言,我们建立了一个时间温度的翻译(TTT)图,该图可捕获基于结晶焓分析的非晶态 - 结晶的LLZO转换,并确认在500 \ xc2 \ xc2 \ xb0的低温下进行薄膜薄膜的稳定稳定。可用于针对生产中碳足迹减少的电池电池设计。
烧结(DC)和两者使用原位反应的变体已成为产生相对密度以上相对密度的相纯UHTC的偏爱烧结方法。15–19对于IV组的烧结(0.65 <ρ相对<0.90)的中间阶段,据报道,据报道的激活能量范围为140至695 kJ/mol的Zrb 2,56至774 kJ/mol的TIB 2,以及96 kJ/mol的HFB 2。5,20–23总体而言,研究得出的结论是,尽管激活能的值应仅取决于致密化的机械性,但更细的初始粒径和增加的压力降低了激活能量。对于烧结的中间阶段,Lonergan报道说,晶界扩散是在2000℃低于2000℃的反应热的Zrb 2中的主要机制,其激活能为241 kj/mol,但晶状体扩散成为2000°C的主要机制,其激活能量为695 kJ/mol。21 Kalish研究了HFB 2的极端压力(800 MPa)下的致密性最后阶段的动力学,并报告了激活能为96 kJ/mol。kalish建议该机制可能是脱位流,因为激活能量足够低,但没有提供其他机械的证据。kalish最终得出结论,在HFB 2的致密阶段,HF的B或晶界扩散是HF的晶界扩散是主要机制。5从那时起,几项研究报告了硼化物中的脱位运动。Koval'Chenko得出结论,脱位运动受到金属sublattice中金属物种的自扩散的限制。2424–29 Koval'Chenko螺柱的钼和钨硼的致密动力学,并报道激活能量是压力的独立性,这表明脱位滑行过程。28 bhakhri估计了使用压痕实验的154±96 kJ/mol中ZRB 2中脱位运动的活化能,并假设汉堡矢量沿着<1 0 0 0 0>方向。