我们报道了外加磁场下HfTe 5 的电子输运特征。随着磁场的增加,我们观察到霍尔电阻ρ xy 出现一系列平台期,直至达到1-2 Tesla 的量子极限。在平台期区域,纵向电阻ρ xx 表现出局部最小值。尽管ρ xx 仍然非零,但是在最后几个平台期,其值变得远小于ρ xy。通过测量 Shubonikov-de Haas 振荡来映射费米面,我们发现霍尔平台的强度与费米波长成正比,这表明它的形成可能归因于相互作用驱动的费米面不稳定性导致的能隙打开。通过比较 ZrTe 5 和 HfTe 5 的体能带结构,我们发现在 HfTe 5 的费米能级附近存在一个额外的口袋,这可能导致有限但不为零的纵向电导。
3D元素掺杂剂。因此,由于存在无量化边缘状态而导致的量子反转对称性可能会导致量子异常效应(qahe)的检测。[10–12]预计此类设备与常规超导体的组合可以容纳Majorana Fermions,这些设备适用于用于拓扑量子计算机的编织设备。[13,14]由于真实材料的频带结构很复杂,因此在较高温度下实现Qahe或Majoraana fermions是一项挑战。需要高度精确的频带结构工程来有效抑制散装带的贡献。迄今为止,这构成了基于Qahe开发实用设备的主要限制障碍之一。因此,不可避免的是对TI的频带结构的更深入的了解。shubnikov – de Hass(SDH)振荡是一种通常在干净的金属中观察到的量子相干性,其中电荷载体可以在没有杂志的网络下完成至少一个完全的回旋运动而无需杂物散射。[15]可以从振荡期和温度依赖性振幅变化中提取诸如费米表面拓扑和无均值路径之类的财富参数。[16]量子振荡已被广泛用作研究高温超导体和拓扑材料的工具。[17–20]最近观察到ZRTE 5中三维(3D)量子霍尔效应(QHE)的观察吸引了进一步的热情研究ti Mate的量子振荡。[24,27]但是,未观察到远程FM顺序。[21]在二进制化合物,BI 2 SE 3,BI 2 TE 3和SB 2 TE 3散装晶体和薄片中观察到了量子振荡。[22–25]在这些系统中,振荡起源于表面状态或散装带,具体取决于化学电位的位置。[26]最近,在掺杂的Ti单晶的3D元素中发现了量子振荡,例如Fe掺杂的SB 2 TE 3和V掺杂(BI,SN,SB)2(TE,S)3。结果促使制备相似材料的薄膜,并具有与高迁移率拓扑表面状态共存的FM顺序的潜力。到目前为止,据我们所知,只有少数报道观察到磁掺杂的TI中的量子振荡,例如V型(BI,SB)2 TE 3,Sm-Doped Bi 2 Se 3。[28,29]但是,