* 通讯作者:daw@clemson.edu 关键词:高熵合金 (HEA);成分复杂合金 (CCA);多组分合金;多主元素合金;等摩尔;FCC;缓慢扩散;空位迁移率;自扩散;示踪扩散;嵌入原子方法 (EAM) 摘要:我们基于 Foiles、Baskes 和 Daw(Foiles、Baskes 和 Daw Phys Rev B 1986)久经考验的嵌入原子方法功能,研究了由 Cu、Ag、Au、Ni、Pd 和 Pt 形成的 57 种随机等摩尔合金中的空位辅助扩散。我们回应了 W. Yeh 等人的建议,Advanced Engineering Materials,2004 年),即增加成分数量会导致随机等摩尔合金中的扩散“缓慢”。使用分子动力学 (MD) 模拟具有单个空位的随机合金,结合空位形成的计算,我们提取了每种合金中空位辅助扩散率。在开发和应用了几种可能的“迟缓性”评估标准后,我们发现只有少数合金(从 1 到 8,取决于迟缓性的定义)表现出迟缓扩散,而绝大多数合金的扩散速度更快,在相当多的情况下应该被认为是剧烈的(即比任何成分都快)。我们将扩散率与
增材制造,又称快速成型,已经彻底改变了聚合物材料部件的生产。增材制造技术的新发展为行业提供了使用各种金属合金、陶瓷和复合材料制造结构部件的能力。金属增材制造工艺的引入彻底改变了工业领域金属部件的生产,其中复杂的几何形状、有机形状、管状、空心设计和致密的晶格填充结构起着决定性的作用。然而,存在一些问题限制了金属增材制造的更广泛采用和利用。这些问题与缺乏设计和建模技能和增材制造软件、使用相同技术但不同机器获得的不同特性、难以完美模拟过程、对零件质量变化原因的理解不完全以及过程的可重复性有关。本期特刊旨在收集金属增材制造的材料供应、零件设计、工艺建模、工艺技术、后处理和应用领域的完整论文和评论。
本博士学位论文是基于卢莱奥大学材料科学系以及2019年9月至2024年8月之间在霍勒甘斯瑞典AB -Sweden AB -Sweden AB -Sweden ab -Sweden ab -Metasphere(瑞典)进行的工作的基础。该项目由HöganäsAB和瑞典战略研究基金会(SSF)共同创立(工业博士生计划,授予编号ID19-0071)。首先,我想对我的主管Farid Akhtar教授和Johanne Mouzon博士表示最深切的感谢,感谢他们在这本期间的重要指导,建议,支持,支持和耐心。,我将永远感谢你们两个人的机会以及随之而来的所有生活课程。我还要感谢Lars Frisk,Erik Nilsson,Nils Almqvist教授和Material Science系的Martin Eriksson以及Assoc。Liang Yu和JudithHernándezCabello教授卢莱奥科技大学化学工程系,他们的技术支持以及对该研究项目至关重要的不同设备。 A special mention to Urban Rönnbäck, late Andrey Chukanov, Rus- lan Shevchenko, and Yuri Nadezhdin, without whom the Metasphere project would have never existed, as well as to the rest of the Metas- phere Dream Team : Roger Engman, late Tord Kalla, Tomas Sandberg, Tina Ståhl Lagerlöf, and William Larsson for their即使在最艰难的时期,也支持和热情。 也要感谢Denis Oshchep-Kov,Sven Bengtsson和HöganäsAB的Nils Jonsson何时何时何时介入,并确保该项目可以完成。 没有你们所有人,我就无法做到这一点。Liang Yu和JudithHernándezCabello教授卢莱奥科技大学化学工程系,他们的技术支持以及对该研究项目至关重要的不同设备。A special mention to Urban Rönnbäck, late Andrey Chukanov, Rus- lan Shevchenko, and Yuri Nadezhdin, without whom the Metasphere project would have never existed, as well as to the rest of the Metas- phere Dream Team : Roger Engman, late Tord Kalla, Tomas Sandberg, Tina Ståhl Lagerlöf, and William Larsson for their即使在最艰难的时期,也支持和热情。也要感谢Denis Oshchep-Kov,Sven Bengtsson和HöganäsAB的Nils Jonsson何时何时何时介入,并确保该项目可以完成。没有你们所有人,我就无法做到这一点。过去和现在的材料科学系的同事,向老,新,迷失和发现的朋友(向Ana,Marina和Camilla大喊大叫,Mina Klippor I Stormen),最后但并非最不重要的一点是:感谢您的无条件支持。
动态,创新且面向未来的,即欧洲复合式®组。为了遵守其原则,EC已经开始了小规模的生产,并将在2021年上半年开始在全球最现代的植物之一,用于制造磷酸阳极阳极阳极氧化铝蜂窝状核心,并在合金5052和5056中使用腐蚀保护。该项目是公司历史上最大的投资之一。在其位于德国比特堡(Bitburg)(德国)的地点的生产中,EC将大大提高其产品范围的现有能力(面板,CNC零件,形成零件)以及航空航天部门的新开发项目。具有新的生产磷酸阳极氧化铝蜂窝状核心的产品线,欧洲复合物®组将再次扩大其产品组合,使其能够更加专门针对客户的需求做出反应。
符合航空航天和国防工业的约束条件。在焊点可靠性研究中,使用有限元分析模拟似乎是一种有前途的解决方案;其结果是维持不断增加的资格测试成本。但是,这种模拟需要焊点所用合金的机械性能。到目前为止,文献中还没有关于机械本构模型、参数或疲劳规律的重要共识。由于这些合金的熔点低,其机械行为很复杂,即使在室温下也能达到可见的粘度域。此外,在这些合金的疲劳分析中不能忽略蠕变疲劳相互作用。因此,很明显,最终应用中的焊点微观结构非常复杂。
免责声明本文件是作为由美国政府机构赞助的工作的帐户准备的。美国政府和劳伦斯·利弗莫尔国家安全,有限责任公司,或其任何雇员均不对任何信息,设备,产品或流程的准确性,完整性或有用性承担任何法律责任或责任,或承担任何法律责任或责任,或者代表其使用不会侵犯私有权利。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或Lawrence Livermore National Security,LLC的认可。本文所表达的作者的观点和意见不一定陈述或反映美国政府或劳伦斯·利弗莫尔国家安全,有限责任公司的观点和观点,不得用于广告或产品代表目的。
• 关键材料选择标准包括比刚度、比强度、耐腐蚀性、抗断裂和疲劳性、4 K ≤ T ≤ 675 K 温度范围内的热膨胀系数和热导率,以及易于制造。
在竞争激烈的全球市场上,具有极端且通常不寻常性能组合的金属材料一直供不应求。当前最先进的金属材料,如镍基高温合金,正在接近其发展的物理极限,因为未来应用所需的工作温度接近或超过了它们的熔点。能源和交通等社会影响重大领域的进步要求探索和开发新型材料解决方案,以在更高温度下改善结构或功能性能。先进难熔合金,特别是难熔金属间复合材料 (RMIC),如 Nb-硅化物原位复合材料、Mo-硅化物基合金、难熔高熵合金 (RHEA)、难熔复合浓缩合金 (RCCA) 和难熔高温合金 (RSA),作为潜在的结构材料,其使用温度远超镍基高温合金,引起了广泛关注 [1-5]。其中一些合金的优异性能使它们成为当前和未来广泛应用的有希望的候选材料。这些先进材料基于 13 种难熔金属,即钨、铼、锇、钽、钼、铌、铱、钌、铪、铑、钒、铬和锆,其熔点介于 1855 ◦ C(锆)和 3422 ◦ C(钨)之间。它们还可能包含其他元素,例如铝、硅和钛,旨在改善设计所需的性能(主要是机械和/或环境性能)。元素周期表中不同族的难熔金属的性能差异很大。难熔金属及其合金的共同特性是熔点高、高温强度高、对液态金属具有良好的耐腐蚀性。难熔金属在极高的温度下也能保持稳定的蠕变变形,部分原因是它们的熔点高。难熔金属可加工成线材、锭材、钢筋、板材或箔材。它们用途广泛,包括热金属加工、熔炉、照明、润滑剂、核反应控制棒、化学反应容器和空间核能系统。它们也是航空航天应用的关键高温材料。此外,难熔金属还可用作合金添加剂——例如,用于钢、高温合金和高熵合金 (HEA)。最后,应该提到的是,大多数难熔金属都具有生物相容性,为开发用于植入应用的生物材料铺平了道路。低温加工性差和高温氧化性差是大多数难熔金属和合金的缺点。通过使用特定的难熔金属和合金添加剂组合可以改善氧化性能。与环境的相互作用会显著影响它们的高温蠕变强度。这些金属和合金在高温下的应用通常需要使用保护气氛或涂层。最近,RMIC、RHEA、RCCA 和 RSA 已成为深入研究的主题,其中许多研究涉及用于航空航天应用的新型超高温材料的设计。本期特刊发表的论文提供了新的信息
摘要:与磁致伸缩系数高但矫顽场大的多晶 Fe 基合金和磁致伸缩系数较小的 Co 基非晶合金(λ s = − 3 至 − 5 ppm)相比,Fe 基非晶材料具有高饱和磁致伸缩系数(λ s = 20–40 ppm)和低矫顽场,为磁传感器、执行器和磁致伸缩换能器提供了新的机会。增材层制造 (ALM) 为更复杂的净成型设计提供了一种新的制造方法。本文回顾了用于制造 Fe 基非晶磁性材料的两种不同的 ALM 技术,包括结构和磁性能。选择性激光熔化 (SLM)——一种粉末床熔合技术——和激光工程净成型 (LENS)——一种定向能量沉积方法——均已用于制造非晶态合金,因为它们在文献中具有高可用性和低成本。利用 SLM 技术引入了两种不同的扫描策略。第一种策略是双扫描策略,可实现 96% 的最大相对密度和 1.22 T 的相应磁饱和度。它还将玻璃相含量提高了 47% 的数量级,并提高了磁性能(将矫顽力降低至 1591.5 A/m,将磁导率提高至 100 Hz 时的 100 左右)。第二种是新颖的扫描策略,涉及两步熔化:初步激光熔化和短脉冲非晶化。这使非晶相分数增加到高达 89.6%,相对密度增加到 94.1%,并将矫顽力降低到 238 A/m。另一方面,尽管 LENS 技术具有提供优异的机械性能、可控的成分和微观结构等优点,但由于其几何精度较低(0.25 毫米)且表面质量较低,因此在非晶态合金生产中的应用并不像 SLM 那样广泛。因此,它通常用于复杂程度较低的大型部件及其修复,由于尺寸限制而限制了非晶态合金的生产。本文全面回顾了这些用于 Fe 基非晶态磁性材料的技术。