作者:Zac Cesaro a、Matthew Ives b、Richard Nayak-Luke a、Mike Mason a、René Bañares-Alcántara a* a 牛津大学工程科学系,OX1 3PJ,牛津,英国 b 牛津大学地理与环境学院,OX1 3QY,牛津,英国* 通讯作者:rene.banares@eng.ox.ac.uk。摘要 绿色氨由空气、水和可再生能源合成,是一种无碳储能载体,具有众多潜在的能源应用,包括可供电力部门调度的绿色电力。由于氨的储存和运输成本低,绿色氨可作为所有地区的能源,而无需碳捕获和储存 (CCS) 或地下储氢的地质储存要求。我们在此提供了一种新颖的技术经济分析方法,根据近期和远期技术发展预测 2040 年氨的平准化电力成本 (LCOE),从而填补了氨作为电力行业能源载体应用方面的知识空白。我们发现,到 2040 年,许多地方的绿色氨价格可能低于 400 美元/吨,如果电解槽的成本降低达到乐观水平,或者当使用更有利的可再生资源供应全球绿色氨市场时,价格有可能降至 300 美元/吨以下。我们模拟了通过联合循环燃气轮机 (CCGT) 燃烧将氨转化为电能,这是实现低成本、可调度发电的有前途的途径。当发电厂容量系数低于 25% 时(这在可再生能源发电量较高的电力行业中可能越来越常见),临界点出现在 400 美元/吨左右的氨燃料价格,从而使绿色氨能够与其他主要形式的可调度、低碳或零碳技术竞争,例如天然气、生物能源或采用燃烧后 CCS 的燃煤发电厂。关键词:绿色氨、发电、LCOE、氨裂解、燃气轮机、Power-to-X
简单地说,绿色氢是通过使用可再生能量将水分成氢和氧气而产生的。绿色氨是由绿色氢制成的,其工艺也由可再生能源提供动力。绿色氢和氨的产生既有正面和负面的环境和社会影响。绿色氢(见表11.1)被视为全球向可持续能量和净零排放的全球温室自由能的主要载体。动量正在增长,以快速扩大绿色氢的产生,以满足IPCCC GHG减少靶标。它正在作为存储能源的一种选择(另请参阅第13章,有关其他储能选项),从具有基于氢的燃料的可再生能源可能会在长途运输(从拥有丰富能源资源的地区到数千公里远的地区)。以绿色氢的形式采用的绿色氨与绿色
从传统的Haber-Bosch工艺开发的大多数可再生氨植物采用水电解来生产氢和空气分离,用于可再生能源的氮生产。尽管利用可再生能源的技术发展了迅速的发展,但间歇性和地理限制的特征使消除基于化石的稳定发电厂并同时满足不断增长的能量需求。这项工作从气体中设计了绿色的氨产生系统。该系统集成了一种基于胺的碳捕获工艺,用于从化石基于化石的发电厂中去除碳,并在压力摆动吸附(PSA)中纯化的氮富集(PSA),PEM水电解和Haber-Bosch工艺中的氢生产过程。该系统是在Aspen Plus V12.1中建模的,设备成本由内置的经济模型获得。模拟数据用于估计原材料和公用事业的成本。考虑到堆栈资本,LCOE和碳价格的按时间顺序变化,评估了总资本投资,总运营成本。节省碳罚款的节省成本证明了将天然气用作氮源的经济利益。通常,与IREA的预测LCOA保持一致,最低的LCOA在2025年通过使用陆上风,在2025年为936 $ t -1,2035年通过使用太阳能PV,在2035年为749 $ t -1。
© 本手稿版本根据 CC-BY-NC-ND 4.0 许可证提供 https://creativecommons.org/licenses/by-nc-nd/4.0/
大多数许可方今天都有使用多个平行过程火车的技术可提供氨开裂植物。尽管许多许可方提供了基于常规的“改革仪”技术(垂直催化剂填充的试管,而火箱中的垂直催化剂填充的管,辐射热传递到工艺管中),如灰氢的生产,氨产生和甲醇生产植物中所采用的,但在整个流动层和核心反应器部分中也观察到显着的差异。duiker的技术采用替代配置中充满催化剂的管,以防止直接暴露于火焰。H2Site的技术由一个装有催化剂的反应堆柱组成,其中包含基于PD的膜。所有许可人都证实,他们可以提供所需的H₂产品纯度和99.9 mol%和50 Barg的压力。各种技术的TRL水平为6-9。
比 H2 便宜,• 可用于在岛屿或孤立地区生产能源,• 可用作燃料,也可用作肥料,• 氢含量高(高于液态 H2),• 具有巨大的经济潜力,市场规模
Lee,C。&Yan,Q。 (2021)。 氮对氨的电化学减少:进步,挑战和未来前景。 电化学中的当前意见,29,100808-。 https://dx.doi.org/10.1016/j.coelec.2021.100808Lee,C。&Yan,Q。(2021)。氮对氨的电化学减少:进步,挑战和未来前景。电化学中的当前意见,29,100808-。https://dx.doi.org/10.1016/j.coelec.2021.100808https://dx.doi.org/10.1016/j.coelec.2021.100808
IMO 2020 和 IMO 2050。目前有几个项目正在测试使用氨作为船用燃料。国际作物营养公司 Yara 是主要的氨生产商之一,该公司计划在 2024 年前为改装后的北海补给船提供氨作为船用燃料。此外,一个由日本公司(包括三井和伊藤忠)组成的跨行业联盟正在考虑推出以氨为燃料的商用船,并在日本开发氨供应基础设施,为航运业提供替代船用燃料,以减少温室气体排放。