我们首次提出了原子中单个单一的自我组装,在簇中(2-6个原子)及其同时的室温稳定稳定锚定在graplene烯中的单个替代si popant上[1]。由于只有少数原子组成的单个原子和原子簇具有不同的物理和化学特性[2,3],因此这些原子结构在固体载体上具有很高的关注,目前吸引了从催化到纳米乳糖的区域中潜在应用的高度关注[4,5]。途径的受控制造和稳定位置仍然很少。在这里,使用定制的制剂室(基本压力〜10 -9 MBAR)将凹入蒸发到悬浮的单层石墨烯(本质上包括一小部分替代的Si杂原子)中,直接耦合到原子分辨率扫描扫描传输透射电子显微镜(STEM)[6]。
或者,可以将掺杂剂沉积到GNR上,15,16,但鲜为人知的是如何通过GNR产生吸附的掺杂剂。在这里,我们证明,在抑制热差异的浴温度下,高电流会驱动掺杂原子来划分。有趣的是,差异是与GNR共同的,从而使GNR独特的模型系统用于研究一个维度的原子差异。特定的GNR顶部的原子,其本身被吸附在AU(111)上(111)。我们将大型电流注入GNR中,STM尖端与GNR接触,在与靶向的CO原子的各种距离处。因此,驱动ad-artoms的驱动范围,我们发现几乎所有的co原子都依赖于GNR,并沿着肋骨进行了差异。我们分析了电流引起的侧向位移的统计分布,显示出与热驱动过程相似的非方向跳跃。我们预计系统可以是
[1] 张志华, 庄国忠, 郭可欣, 袁建华, Superlatt.微结构。 2016,100,440。[2] a)FK Boz,B. Nisanci,S. Aktas,SE Okan,Appl。冲浪。科学。 2016年,387,76; b) S. Yilmaz,M. Kyrak,国际。 J. Mod.物理。 B 2018 , 32 , 1850154. [3] RLM Melono, CF Lukong, O. Motapan, J. Phys. B:At.,Mol.选择。物理。 2018,51,205005。[4] G. Safarpour、MA Izadi、M. Nowzari、E. Nikname、MM Golshan、Commun。理论。物理。 2014 ,61,765。[5] Y. Yakar,B. Çakır,A. Özmen,Int. J. Mod.物理。 J 2007 , 18 , 61 [6] H. Kes, A. Bilekkaya, S. Aktas, S. Okan, Superlatt.微结构。 2017 ,111,966. [7] a)O. Akankan、I. Erdogan、H. Akbas ̧、Phys. E 2006,35,217; b) XC Li、CB Ye、J. Gao、B. Wang、Chin。物理。 B 2020 , 29 , 087302. [8] a)XC Li, CB Ye, J. Gao, B. Wang, Chin.物理。 B 2020,29,087302; b) JD Castano-Yepes、A. Amor-Quiroz、CF Ramirez-Gutierrez、EA Gomez、Phys。 E 2020,109,59。[9] a)H. El, AJ Ghazi, I. Zorkani, E. Feddi, A. El Mouchtachi, Phys. B2018,537,207; (b)E. Niculescu、C. Stan、M. Cristea 和 C. Trusca,Chem.物理2017 ,493 ,32。[10] a)B. Cakir、Y.Yakar、A.Ozmen,Chem.物理。莱特。 2017年,684,250; b) Y. Yakar、B. Çakir、A. Özmen,Chem.物理2018,513,213。
硅藻等复杂微观且具有工业重要性的微藻群体的好处并不为人所知,最近它们的工业潜力让科学界大吃一惊。硅藻具有在恶劣条件下生存的能力,并且具有不同的孔隙结构和明确的细胞壁,使其成为生产各种工业产品的理想细胞机器。随着显微镜、宏条形码、分析和遗传工具的进步,硅藻细胞在工业应用中的前景也显著增加。此外,众所周知,工业和学术界对遗传工具的使用方式发生了重大变化,从而对硅藻的各种分子成分进行了明确的表征。可以以经济高效的方式进行硅藻培养的初级培养、收获和进一步的下游加工。硅藻具备成为制药、纳米技术和能源替代原料的所有品质,从而实现可持续经济。本综述试图收集硅藻在生物技术、生物医学、纳米技术和环境技术等不同工业应用方面的重要进展。
利用光操控中性原子是过去 30 年量子物理领域无数科学发现的核心。在光阱阵列中,在单粒子层面实现的控制水平已经保留了量子物质的基本特性(相干性、纠缠和叠加),这使得这些技术成为实现颠覆性计算范式的首选。在本文中,我们回顾了这些设备从原子 / 量子比特到应用接口的主要特征,并提出了在我们所处的嘈杂中尺度量子 [ 1 ] 时代已经可以以计算高效的方式解决的各种任务的分类。我们说明了如何在数字层面(编程基于门的电路)或模拟层面(编程哈密顿序列)探索从优化挑战到量子系统模拟等各种应用。我们提供了 100-1,000 量子位范围内中性原子量子处理器的内在可扩展性的证据,并介绍了通用容错量子计算和超越量子计算的应用的前景。
量子电动力学中光与物质相互作用的模型通常采用偶极近似 1,2,其中与原子相互作用的电磁模式的波长相比,原子被视为点状物体。然而,当原子尺寸与模式波长之比增加时,偶极近似不再成立,原子被称为“巨原子” 2,3 。到目前为止,巨原子领域固态器件的实验研究仅限于耦合到短波长表面声波的超导量子比特 4–10 ,只探测单一频率下的原子特性。在这里,我们使用一种替代架构,通过将小原子在多个但分隔良好的离散位置耦合到波导来实现巨原子。该系统能够实现可调原子-波导耦合,具有较大的开关比 3 ,并且耦合谱可通过器件设计进行工程设计。我们还展示了多个巨型原子之间的无退相干相互作用,这些相互作用由波导中的准连续模式谱介导,这是使用小原子无法实现的效应 11 。这些特性允许此架构中的量子比特在原位在受保护和发射配置之间切换,同时保留量子比特-量子比特相互作用,为高保真量子模拟和非经典巡回光子生成开辟了可能性 12,13 。
教职员工:Jeff Young、Robert Raussendorf、Lukas Chrostowski 学生、博士后、研究人员:Kashif Awan、Jingda Wu、Xiruo Yan、Donald Witt、Becky Lin、Adam Darcie、Adan Azem、Abdelrahman Afifi、Sebastian Gitt、Matthew Mitchell、Andreas Pfenning、David Roberts 与西蒙弗雷泽大学的 Stephanie Simmons 团队合作。
光与物质相互作用的模型通常采用偶极子近似 [1,2],在该近似中,原子与与之相互作用的电磁模式的波长相比,被视为点状物体。然而,当原子尺寸与模式波长之比增加时,偶极子近似不再成立,原子被称为“巨原子” [2,3]。到目前为止,对巨原子领域固态器件的实验研究仅限于与短波长表面声波耦合的超导量子比特 [4-10],仅探测单一频率下的原子特性。在这里,我们采用了一种替代架构,通过将小原子与多个但相隔良好、离散的位置的波导耦合来实现巨原子。我们对巨原子的实现使得可调的原子-波导耦合成为可能,该耦合具有大的导通比,并且可以通过器件设计来控制耦合谱 [3]。我们还展示了多个巨原子之间的无退相干相互作用,这种相互作用由波导中模式的准连续谱介导,这是小原子无法实现的效应 [11]。这些特性使该架构中的量子比特能够在保护配置和发射配置之间原位切换,同时保留量子比特之间的相互作用,为高保真量子模拟和非经典巡回光子生成开辟了新的可能性 [12, 13]。原子直接耦合到波导的器件可以通过波导量子电动力学 (wQED) 很好地描述。超导电路为实现和探索 wQED 物理提供了一个理想的平台,因为它可以实现
摘要 具有里德堡介导相互作用的单个原子组装阵列为多体自旋哈密顿量的模拟以及基于通用门的量子信息处理的实现提供了强大的平台。我们展示了在微透镜产生的可重构几何多点陷阱阵列中首次实现里德堡激发和受控相互作用。我们利用原子逐个组装来确定性地制备预定义的铷里德堡原子二维结构,这些结构具有精确已知的相互分离和可选择的相互作用强度。通过调整几何形状和所讨论的里德堡状态,可以访问从弱相互作用到强耦合的参数范围。我们表征了 57D 5 / 2 状态下非相互作用原子簇的同时相干激发,并分析了实验参数和局限性。对于利用 87D 5 / 2 状态优化的里德堡阻塞配置,我们观察到集体增强的拉比振荡。
对于 v = 2 状态,其电子密度达到近 7 × 10 − 16 cm 2,而对于 v = 2 状态,其电子密度达到 4 . 5 × 10 − 16 cm 2 [ 24 ]。注意