1。简介:attosond Electron动力学,Petahertz光电子和量子力学中的“损失时间”的问题370 2。量子力学中的严重问题:量子跳跃,不确定性关系和Pauli定理371 2.1 Bohr的理论,量子跳跃和时间测量的不确定性; 2.2 Pauli的定理3。量子力学中的时间面孔372 3.1内部和外部时间; 3.2作为量子可观察的时间和时间操作员; 3.3延迟时间4。mandelstam±tamm不确定性关系374 5。量子保真度和量子速度限制375 6。能量±时间不确定性,与时间有关的汉密尔顿人375 7。激光驱动的量子动力学376 8。不确定性关系和电子动力学的速度限制376 9。Keldysh参数和光电子的Petahertz极限378 10。mandelstam±Tamm的不确定性关系和量子进化的信息几何度量379 10.1量子演化的几何形状; 10.2量子保真度和渔民信息; 10.3不确定性关系和cram er±rao绑定11。量子速度极限的非量化性质381 12。热力学不确定性限制382 12.1信息指标和热力学不确定性; 12.2膜蛋白温度阈值的热力学极限13。结论383参考383
抽象隔离的多MEVγ射线,持续时间,高准直和梁角动量(BAM)可能会在核物理学,天体物理学等中找到许多有趣的应用。在这里,我们提出了一种方案,通过非线性汤姆森散射生成这种γ-射线,该旋转相对论电子板由几个周期扭曲的激光脉冲驱动,与微滴定目标相互作用。我们的模型清楚地确定了激光强度阈值和载体 - 内玻璃相对隔离电子纸的产生的影响。三维数值模拟表明,γ射线发射的持续时间为320次,峰值光彩为9.3×10 24光子S -1 mrad -2 mm -2 mrad -2 mm -2每0.1%带宽在4.3 MEV时。γ-射线梁的大BAM为2.8×10 16ℏ,这是由有效的BAM转移来自旋转电子板的有效BAM转移,随后导致了独特的角度分布。这项工作应促进对大型激光设施中旋转电子片的非线性汤姆森散射的实验研究。
在许多领域学习材料的能力至关重要。随着技术的进步,现在可以详细研究原子化。本文在检查不同的反应时研究了两个因素,包括带宽和选择性。具体来说,它探讨了激光脉冲的持续时间如何影响研究过渡时能量和选择性的宽度。这是使用由Morlet小波建模的FEMTO-和ATTSOND脉冲的模拟完成的。然后将这些脉冲转换为傅立叶,以根据海森伯格的不确定性原理来分析该脉冲中所含能量的宽度。费米的黄金法则和电子结合能的表用于定性评估选择性。结果表明,1 FS脉冲对应于FWHM能量中的约1 eV,而A为脉冲对应于FWHM能量中约1000 eV。选择性在多个跃迁耦合时随着带宽的增加而,但是当特定过渡的耦合是dom-Inant时,会改善。 状态的密度也会影响选择性;较高的密度降低了选择性,而较低的密度可以增强它。,但是当特定过渡的耦合是dom-Inant时,会改善。状态的密度也会影响选择性;较高的密度降低了选择性,而较低的密度可以增强它。
执行Attosond-Pump Attosent-probe光谱(APAPS)的能力是超快科学的长期目标。第一次开创性的实验证明了APAP的可行性,但重复率较低(10至120 Hz),并且现有设置的大量足迹迄今妨碍了对APAP的广泛利用。在这里,我们使用1 kHz的商业激光系统,在空心核心纤维中直接压缩后进行了两种座椅,以及紧凑的高谐波生成(HHG)设置。后者可以通过使用过量的HHG几何形状并利用HHG培养基中驱动激光器的瞬时蓝光来实现强烈的极端脉络膜(XUV)脉冲的产生。产生了近距离的脉冲,如一色和两色Xuv-Pump Xuv-probe实验所证明的那样。我们的概念允许在许多实验室的极短时间内进行选择性抽水和探测,并允许对其他泵种技术无法访问的基本过程进行调查。
与激光相关的诺贝尔奖因其在开创性研究领域的应用而被授予,就像2023年一样。激光器与13-14个物理奖密切相关,涉及新发现,发明或研究方法。列表很长,包括光纤,光纤镊子,频率梳,FEM化学研究以及与被困颗粒有关的研究。激光器在检测引力波和全息图中也起着至关重要的作用。2023年奖项适合这个有力的系列。Pierre Agostini,Ferenc Krausz和Anne L'Huillier的奖品和作品展示了最先进的激光技术如何使极端非线性光学和授权物的出现以及AttoSecond科学如何触发现已用于医学诊断研究或半科学研究的革命光源的发展。
相干电子位移是处理量子信息的一种传统策略,因为它能够将原子网络中的不同位置互连。处理的效率依赖于对机制的精确控制,而这种机制尚未建立。在这里,我们从理论上展示了一种新方法,即利用阿秒单周期脉冲,在比电子波包动态扭曲更快的时间尺度上驱动电子位移。这些脉冲的特征依赖于向电子传递巨大的动量,导致其沿单向路径位移。通过揭示编码量子叠加态的位移波包的时空性质,说明了这一场景。我们绘制出相关的相位信息,并从原点远距离检索它。此外,我们表明,将一系列这样的脉冲应用于离子链,能够以阿秒为单位控制电子波包在相邻位置之间来回相干运动的方向性。扩展到双电子自旋态证明了这些脉冲的多功能性。我们的研究结果为使用阿秒单周期脉冲对量子态进行高级控制建立了一条有希望的途径,为超快速处理量子信息和成像铺平了道路。