获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
仿真在解释大型强子对撞机(LHC)实验的碰撞数据以及与理论预测的测试对齐中起着至关重要的作用。在模拟碰撞数据中所带来的独特挑战,包括高维特征空间和缺乏可拖动的可能性模型,启发了一系列深度学习解决方案[1,2]。特别是,对于模拟检测器中的粒子相互作用,核心挑战是有限的计算资源,以对热量计中的粒子阵雨建模所需的极端细节主导。在这里,基于Geant 4 [3 - 5]的蒙特卡洛模拟的传统方法是强大但资源高度的 - 占据了地图集模拟链中最大的时间[6]。在未来的高光度LHC运行中,热量计模拟将需要应对更高的数据速率,从而可能成为物理分析的限制因素,而在该领域没有显着进展[7]。为了大大加快热量计模拟的速度,已经采取了许多努力。虽然快速的淋浴模型已成功部署在LHC实验[8,9]中,但准确性却有限。最近,深层生成模型的出现导致了它们的广泛流行和解决这项任务的潜力。应用于量热计的第一个生成模型