锂硫电池(LSB)在过去几十年中已成为下一代储能的有吸引力的候选者,这是由于它们的超高理论能量密度以及硫的低成本和生态友好性。受到LSB的成就的启发,更多的金属 - chalcogen电池(MCB)也基于多电子氧化还原反应。我们知道,在LSB的发展中遇到的挑战主要是反应中间体(锂多硫化物)的班车影响,多阶段和多阶段反应行为的缓慢动力学以及树突形的形成和液体金属Anodes的界面腐蚀。MCB中也存在这些问题。以更好的方式解决这些问题是促进MCB的商业应用的关键。本期特刊将介绍MCB的当前状态,提出解决上述问题的策略,探索改善MCB的性能的内部机制,并最终提供指导指导MCB的进一步应用和开发的方向。
二维 (2D) 过渡金属二硫属化物已成为下一代光电和自旋电子器件的有前途的平台。使用胶带进行机械剥离仍然是制备最高质量的 2D 材料(包括过渡金属二硫属化物)的主要方法,但总是会产生小尺寸的薄片。这种限制对需要大规模薄片的研究和应用构成了重大挑战。为了克服这些限制,我们探索了使用最近开发的动力学原位单层合成法 (KISS) 制备 2D WS 2 和 WSe 2。特别是,我们关注了不同基质 Au 和 Ag 以及硫族元素原子 S 和 Se 对 2D 薄膜产量和质量的影响。使用光学显微镜和原子力显微镜表征了 2D 薄膜的晶体度和空间形貌,从而对剥离质量进行了全面评估。低能电子衍射证实 2D 薄膜和基底之间没有优先取向,而光学显微镜则表明,无论使用哪种基底,WSe 2 在生成大单层方面始终优于 WS 2。最后,X 射线衍射和 X 射线光电子能谱表明 2D 材料和底层基底之间没有形成共价键。这些结果表明 KISS 方法是非破坏性方法,可用于更大规模地制备高质量 2D 过渡金属二硫属化物。
摘要:热电材料早已被证明能有效地将热能转化为电能,反之亦然。自从半导体被用于热电领域以来,人们做了大量工作来提高它们的效率。它们的热电物理参数(塞贝克系数、电导率和热导率)之间的相互关系需要特殊的调整,才能最大限度地提高它们的性能。在开发热电性能的研究中,已经报道了各种方法,包括掺杂和合金化、纳米结构和纳米复合。在不同类型的热电材料中,层状硫族化物材料是具有独特性能的独特材料。它们具有低的自热导率,并且它们的层状结构使它们易于修改以提高其热电性能。在这篇综述中,提供了热电概念的基本知识以及提高性能系数的挑战。文中简要讨论了不同组层状硫属化物热电材料的结构和热电性能。文中还介绍了文献中用于提高其性能的不同方法以及该领域的最新进展。文中重点介绍了石墨烯作为层状硫属化物材料基质的有前途的纳米添加剂,并展示了其对提高其性能系数的影响。
摘要:拓扑化学是指固态反应的一般类别,其中前体和产品在其晶体结构中表现出强烈的案例。各种低维材料通过在其2D板之间或通过范德华(VDW)相互作用束缚的1D链之间容纳来宾原子或分子,都会受到这种逐步结构的转化。这些过程是由客人和主机框架之间的氧化还原反应驱动的,在这些反应中,过渡金属阳离子已被广泛利用为氧化还原中心。拓扑化学加上这种阳离子氧化还原,不仅可以采用诸如锂离子二级电池之类的技术应用,而且还可以作为分层过渡金属化合物的结构或电子微调的强大工具。近年来,我们一直在追求超出这种阳离子氧化还原拓制化学以外的材料设计,该底座层次化学大多仅限于2D或1D VDW系统。为此,我们提出了由2D阵列的非VDW化合物的新的拓扑化学反应,该反应由阴离子chalcogen二聚体的2D阵列与氧化还原intert宿主阳离子层交替。发现这些chalcogen二聚体与外部金属元件发生氧化还原反应,触发(1)插入这些金属以构建2D金属硫化剂,或(2)(2)去构成chalcogen anions。从整体上讲,这种拓扑化学就像“拉链”,在那里,阴离子chalcent-chalcogen键的还原性裂解为非VDW材料的空间打开了空间,从而形成了新的分层结构。关键字:拓扑化学,阴离子氧化还原,插入,辣椒剂,低维材料■简介这种观点简要总结了阴离子氧化还原拓扑化学实现的独特结构转换的开创性示例以及其合成和特征的挑战。
键,导致电子密度的各向异性分布,在大多数情况下,产生了积极的电势区域。This phenomenon is particularly prominent in heavier p-block elements, such as germanium and tin in group 14 (tetrel bonds), 13 arsenic and antimony in group 15 (pnicto- gen bonds), 14 selenium and tellurium in group 16 (chalcogen bonds), 15 and bromine and iodine in group 17 (halogen bonds), 16 all of which act as σ -hole donors.σ-孔之间的相互作用,包括卤素,chalcogen,Pnictogen和Tetrel键,在超分子化学和晶体工程中是关键的,在摩尔组装过程中提供了方向性和特异性。17这些相互作用是形成高度有序的超分子结构的组成部分,并且越来越多地用于功能材料,分子识别系统和超分子催化剂的设计。在催化中,σ孔相互作用有助于过渡态和中间体的稳定,从而提高了催化效率和选择性。18,随着我们对σ孔相互作用的理解加深,它们的应用继续扩展,为高级材料和催化剂的设计和合成中创新的新途径提供了扩展。19
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
过渡金属三卡构基化(TMTC)是准二维(1D)MX 3-Type van der wa wa waals分层半导体,其中M是IV和V组的过渡金属元素,X表示chalcogen元素。由于独特的准1D晶体结构,它们具有多种新型的电气特性,例如可变的带镜,电荷密度波和超导性,以及高度各向异性的光学光学,热电和磁性。TMTC的研究在1D量子材料字段中起着至关重要的作用,从而在材料研究维度中实现了新的机会。目前,已经在材料和固态设备方面取得了巨大进展,证明了在实现纳米电子设备中的有希望的应用。本评论提供了一个全面的概述,以根据TMTCS调查材料,设备和应用程序的最新技术。首先,已经讨论了TMTC的符号结构,当前的主要合成方法和物理特性。其次,提出了各个领域中TMTC应用的示例,例如光电探测器,储能设备,催化剂和传感器。最后,我们概述了TMTC研究的机会和未来观点,以及基础研究和实际应用中的挑战。