序言 本材料旨在提供背景信息、一般概念和技术指导,以帮助那些对职位进行分类的人选择、解释和应用人事管理办公室 (OPM) 分类标准。这是一份良好判断的指南,而不是它的替代品。此处包含的指南是官方指南,在评估一般时间表所涵盖的职位时可以作为参考。本指南取代并取代了 1963 年和 1976 年 8 月的分类原则和政策。它结合了 OPM 小册子《如何在因素评估系统下编写职位描述》(1979 年 9 月)和《因素评估系统说明》(1977 年 5 月)中的材料。因素评估系统 (FES) 主要标准可在职位分类标准简介附录 3 中找到。
抽象机器学习分类模型学习输入作为特征和输出作为类的关系,以预测新给定输入的类。几项研究工作证明了机器学习算法的有效性,但最新的算法基于概率和逻辑的经典理论。量子力学(QM)已经在许多领域显示其有效性,研究人员提出了几个有趣的结果,这些结果无法通过经典理论获得。近年来,研究人员一直在尝试调查QM是否可以帮助改善经典的机器学习算法。认为,如果正确实施QM理论也可能会激发有效的算法。从这种灵感中,我们提出了量子启发的二进制分类器,该分类基于量子检测理论。我们使用文本语料库和图像库来探索我们提出的模型的效果。我们提出的模型在20个新闻组文本语料库中的几个主题(类别)方面优于最先进的模型。当使用MNIST手写图像数据集时,我们所提出的模型在召回方面优于所有基准。对于大多数类别而言,F量也更高,对于某些类别,精度也更高。我们提出的模型表明,使用量子检测理论可以实现二元分类效果。特别是,我们发现我们的量子启发的二进制分类器可以增加分类的精度,回忆和f量表,而最先进的方法不能。
PD 封面是否正确填写?___ 是的。所有项目均已填写并签名。这是主管职位还是领班职位?___ 是的。PD 封面,第 6 项已填写。___ 否。这是一个非主管/非领班职位。是否附有简要的 PM 报告?___ 是的。附有 PM 报告。是否附有组织结构图?___ 是的。附有经批准的当前和/或新组织结构图。是否附有职能说明?___ 是的。附有适当的功能说明。附有任务列表吗?___ 是。不超过 1 页。___ 否。确定适用的 MLC/IHA JD。所有任务都超过 10%?___ 是。所有任务都分组为总计 10% 或更多。所有任务都包含百分比?___ 是。百分比分配为总计 100%。是否使用主动动词?___ 是。使用主动动词描述任务。您是否想同时建立实习生 PD?___ 是。实习生 PD 已加入。___ 否。实习生 PD 不是必需的。组织中是否有其他职位受此职位影响?
摘要:物理学的概念和定律一直是工程师克服人类挑战和问题的宝贵灵感来源。分类是此类问题在工程科学各个领域中起主要作用的重要例子。表明,歧视性分类器倾向于优于其生成性对应物,尤其是在有足够标记的训练数据的情况下。在本文中,我们使用最小潜在线提出了一种新的物理启发性分类方法。为此,我们首先考虑两组固定点电荷(作为两类数据)和它们之间的可移动分类器线。然后,由于两组点电荷,我们通过最小化分类器线上的总电位积分来找到分类器线的稳定位置。令人惊讶的是,将显示获得的分类器实际上是基于不确定性的分类器,可最大程度地减少分类器线的总不确定性。实验结果显示了所提出的方法的有效性。
摘要 — 在当前的数据科学应用中,行动的方向是使系统行为适应人类认知,从而产生了可解释人工智能这一新兴领域。在不同的分类范式中,基于模糊规则的分类范式是强调全局系统可解释性的合适解决方案。然而,在处理大数据分析时,它们可能包含过多的规则和/或语言标签,这不仅可能导致系统性能下降,还可能影响系统语义以及系统可解释性。在本文中,我们提出了 IFC-BD,一种用于大数据的可解释模糊分类器,旨在通过学习紧凑而准确的模糊模型来提升可解释性的范围。IFC-BD 是在基于单元的分布式框架中通过初始规则学习、规则泛化和启发式规则选择三个工作阶段开发的。整个过程允许从大量特定规则扩展到更少数量的更通用和更可信的规则。此外,为了解决可能出现的规则冲突,我们专门针对大数据问题提出了一种新的估计规则权重。我们将 IFC-BD 与模糊分类范式的最新方法进行了比较,考虑了可解释性、准确性和运行时间。实验结果表明,所提出的算法能够提高基于模糊规则的分类器的可解释性及其预测性能。
ml是一组模型,可以自动识别数据中的隐藏模式,然后可以利用隐藏的图案在不确定性条件下做出决策。mL已在包括化学,生物医学科学和机器人技术在内的多个领域逐步实施。ml分为三类,即监督学习(例如分类),无监督的学习(例如聚类)和增强学习。在本文中,我们专注于分类,这是将对象表示和分配到不同cate-gories的方式。QT是表示微观现象的特性和预测特性的概率方法。给出了微观粒子的可使用和任意状态,QT计算了可使用的值的概率分布。量子形式主义是可以明确接受的,可以解释不同类型的随机过程。已经出现了量子形式主义的几种非标准实施。例如,量子形式主义也被广泛用于经济过程,游戏理论和认知科学。由于数据呈指数增长,因此当前的ART模型仍然无效。尤其是,召回仍然不令人满意,因为大多数分类模型旨在最大化精度,尤其是当可以通过一定的级别成员资格来对班级的项目进行排名时;一个明显的例子是搜索互联网。相反,
西班牙M´Alaga大学的计算机建筑系B计算机科学与数值分析系C´ordoba University of C´ordoba,西班牙C c电子技术系,西班牙M´Alaga大学电子技术系
摘要 - 要在实际环境中见证量子优势,不仅在硬件级别上,而且在理论研究上都需要大量努力,以降低给定协议的计算成本。量子计算有可能显着增强现有的经典机器学习方法,并且已经提出了基于内核方法的二进制分类的几种量子算法。这些算法依赖于估计期望值,这又需要多次重复昂贵的量子数据编码过程。在这项工作中,我们明确计算获取固定成功概率所需的重复数量,并表明Hadamard检测和交换测试电路在量子电路参数方面实现了最佳差异。仅通过优化与数据相关的参数进行优化,可以进一步减少差异,因此重复的数量。我们还表明,无论数据的数量和尺寸如何,都可以通过单量测量进行基于内核的二进制分类。最后,我们表明,对于许多相关的噪声模型,可以可靠地执行分类,而无需纠正量子误差。我们的发现对于在有限的资源下设计量子分类实验非常有用,这是嘈杂的中间尺度量子时代的普遍挑战。
量子机器学习有可能为人工智能提供强大的算法。在量子机器学习中追求量子优势是一个活跃的研究领域。对于目前有噪声的中型量子计算机,已经提出了各种量子-经典混合算法。一种先前提出的混合算法是基于门的变分嵌入分类器,它由经典神经网络和参数化的基于门的量子电路组成。我们提出了一种基于模拟量子计算机的量子变分嵌入分类器,其中控制信号随时间连续变化:我们特别关注的是使用量子退火器的实现。在我们的算法中,通过线性变换将经典数据转换为模拟量子计算机的时变哈密顿量的参数。非线性分类问题所需的非线性纯粹由模拟量子计算机通过最终量子态对哈密顿量控制参数的非线性依赖性提供。我们进行了数值模拟,证明了我们的算法对线性不可分数据集(例如同心圆和 MNIST 数字)进行二分类和多类分类的有效性。我们的分类器可以达到与最佳经典分类器相当的准确度。我们发现,通过增加量子比特的数量可以提高分类器的性能,直到性能饱和并波动。此外,我们的分类器的优化参数数量与量子比特的数量成线性关系。因此,当我们的模型大小增加时,训练参数数量的增加速度不如神经网络快。我们的算法提出了使用当前量子退火器解决实际机器学习问题的可能性,并且它还可用于探索量子机器学习中的量子优势。
简介:基于加速度计的体育活动类型的测量通常用于替代自我报告。为了推进领域,希望这样的测量可以准确检测关键的日常体育活动类型。这项研究旨在评估机器学习分类器的性能,用于根据双重与单个加速度计的设置在自由生活中检测坐,站立,撒谎,步行,跑步和骑自行车。方法:22名成年人(平均年龄[SD,范围] 38.7 [14.4,25 - 68年)穿着两个轴性AXTIVITY AXTIVE AXTIVE AXTIVE AX3加速度仪位于低背部和大腿上,以及位于胸部上的GOPRO相机,在自由生活中记录下身体运动。使用标记的视频用作地面真理,用于训练使用1、3和5 s的窗口长度训练极端梯度的分类器。使用剩余的交叉验证评估分类器的性能。结果:总记录时间约为38小时。基于5-S窗口,双加速度计设置的总体精度分别为96%,单个大腿和后加速度计的设置分别为93%和84%。单个加速度计设置的精度降低是由于基于大腿加速度计记录(77%)的检测精度较差,并且基于后加速度计记录(64%)。结论:使用极端梯度提升分类器,可以根据双加速度计记录在自由生活中准确检测到关键的每日体育活动类型。当预测基于单个大腿加速度计的记录时,总体准确性会略有下降,但检测说谎很差。