如果节点具有战略意义并可以更改聚类,那么聚类的质量(通常通过电导率、切边数或到中心的平均距离来衡量)会下降多少?在节点的合理效用中,哪一个对质量的损害最小?我们从理论上研究了这些问题,通过研究享乐博弈(具有不受约束的聚类数量的简化聚类博弈)的均衡,并从实验上测量了更现实的聚类博弈的纯纳什均衡的质量。我们为节点引入了一个新的效用函数,我们称之为接近度,我们相信它是先前研究的节点效用的一个有吸引力的替代方案。我们从理论上研究了接近度效用的属性,并通过实验证明了它比其他已建立的效用(如修改后的分数效用)的优势。最后,我们提出了一个多项式时间算法,该算法在给定一个具有最优质量的聚类的情况下,找到另一个具有更好平均效用的聚类,事实上,这个算法可以最大化平均效用的增益与质量损失的比率。
摘要 - 近年来,关于聚类算法的许多研究主要集中在提高其准确性和效率上,通常以牺牲可解释性为代价。但是,由于这些方法越来越多地应用于医疗保健,金融和自主系统等高风险领域,因此对透明和可解释的聚类结果的需求已成为一个关键问题。这不仅需要获得用户信任,而且还需要满足这些领域不断增长的道德和监管要求。确保可以清楚地理解和合理的聚类算法的决策是基本要求。为了满足这一需求,本文对可解释的聚类算法的当前状态进行了全面且结构化的综述,并确定了关键标准以区分各种方法。这些见解可以有效地帮助研究人员对特定应用程序环境的最合适的可解释聚类方法做出明智的决策,同时还促进了既高效又透明的聚类算法的开发和采用。
摘要。由于存在提供原始特性的阳离子簇,因此在随机网络模型中无法在随机网络模型中描述阳离子的结构行为。甚至观察到可能以百分比浓度出现的阳离子观察到这些凝结过程,这使其更加壮观。尤其是,在(铝制)硅酸盐玻璃中ZR 4 + - 和Fe 2 + /Fe 3 +的结构和化学特性说明了阳离子周围的短距离顺序与纳米级异质性的形成之间的联系。这些Zr-或Fe富集的簇的结构特性相似,因为两者都是基于边缘共享阳离子多面体。阳离子也可能在网络形成位置中发生。在这种情况下,阳离子位点与硅酸盐网络连接。在这种定位中,保林规则和局部费用余额要求将有利于阳离子在纳米级稀释。对于前者而言,这两种类型的局部结构的拓扑约束比后者更强,因为与拐角共享的polyhedra相比,疾病的e ff ects较小。这可以解释这种有序异质性的生长过程中的晶体成核,从而产生了原始特性,这些特性在大量玻璃材料中所示,其中包含高科技玻璃陶瓷和火山眼镜。
推导出一种新型的完全分布式联合核学习和聚类框架,该框架能够以无监督的方式确定聚类配置。利用半定规划来量化候选核相似矩阵与特定秩的块对角线结构的接近程度。利用凸函数差和块坐标下降,推导出一种递归算法,该算法联合确定适当的核相似矩阵和聚类因子。以可分离的方式重新表述所涉及的半定程序,我们基于交替方向乘数法,构建一个完全分布式方案,通过协作的相邻代理在自组织网络中实现联合核学习和聚类。收敛声明表明,所提出的算法框架返回有界相似核更新,促进块对角线结构。利用合成数据和真实数据的详细数值示例表明,分布式新方法可以实现接近甚至超过现有集中式替代方案所实现的聚类性能。关键词:分布式学习、内核、聚类、无监督学习、优化
识别高能粒子碰撞中形成的喷流需要解决可能大量终态粒子的优化问题。在这项工作中,我们考虑使用量子计算机加速喷流聚类算法的可能性。专注于电子-正电子碰撞的情况,我们考虑一种众所周知的事件形状,称为推力,其最优值对应于一组粒子中最像喷流的分离平面,从而定义两个半球喷流。我们展示了如何将推力公式化为量子退火问题和 Grover 搜索问题。我们分析的一个关键部分是考虑将经典数据与量子算法接口的现实模型。通过顺序计算模型,我们展示了如何将众所周知的 O × N 3 Þ 经典算法加速为 O × N 2 Þ 量子算法,包括从 N 个终态粒子加载经典数据的 O × N Þ 开销。在此过程中,我们还找到了一种将经典算法加速到 O = N 2 log N Þ 的方法,该方法使用受 SISC 单喷射算法启发的排序策略,该算法没有自然的量子对应物。借助并行计算模型,我们在经典和量子情况下都实现了 O = N log N Þ 的缩放。最后,我们考虑将这些量子方法推广到与大型强子对撞机质子-质子碰撞中使用的算法更密切相关的其他喷射算法。
神经形态架构的底部两层经过设计,并被证明能够进行在线聚类和监督分类。使用主动脉冲树突模型,单个树突段执行的功能与经典的积分和激发点神经元基本相同。然后,单个树突由多个段组成,并能够进行在线聚类。虽然这项工作主要侧重于树突功能,但可以通过组合多个树突来形成多点神经元。为了展示其聚类能力,树突被应用于脉冲分类——脑机接口应用的重要组成部分。监督在线分类被实现为由多个树突和简单投票机制组成的网络。树突独立且并行地运行。网络以在线方式学习,并能适应输入流中的宏观变化。
fMRI 的最新研究重点是放宽大脑在实验过程中处于静态的假设。许多研究表明,在单次扫描过程中,大脑是随时间变化的(或动态的)(Chang and Glover,2010;Sakoglu 等人,2010;Hutchison 等人,2013;Calhoun 等人,2014;Faghiri 等人,2018;Lurie 等人,2020)。分析大脑动态方面的一种常用方法是使用滑动窗口结合连接估计器(例如 Pearson 相关)来估计随时间变化的连接(Handwerker 等人,2012;Allen 等人,2014)。这种方法很有用并且被广泛使用,部分原因是它很简单,但它也有一些局限性。对数据进行窗口化会导致 fMRI 中的时间信息变得平滑,可能会丢失重要信息。此方法的一个较小的问题是,必须使用特定的窗口长度进行此分析,而更改此窗口长度可能会改变最终结果(Sakoglu 等人,2010 年;Shakil 等人,2016 年)。为了解决平滑问题,已经提出了几种方法,这些方法要么更即时(Shine 等人,2015 年;Omidvarnia 等人,2016 年;Faghiri 等人,2020 年),要么使用不同的滤波和时频方法来探索连通性的全频谱(Chang 和 Glover,2010 年;Yaesoubi 等人,2015 年;Faghiri 等人,2021 年)。有关时变连通性的更详细评论,请参阅(请参阅 Bolton 等人,2020 年;Iraji 等人,2020a)。许多基于连接性的方法并不直接利用数据在其原始高维空间中的动态性(即,使用数据计算滑动窗口相关性,该相关性在每个组件对之间分别计算)。这导致需要在许多独立于其他 2D 空间的二维 (2D) 空间中检查数据(其中每个 2D 空间特定于一个组件对)。最近,有人提出了新方法,尝试使用不同的方法从这些 2D 空间转到更高维度(Faskowitz 等人,2020 年;Iraji 等人,2020b 年)。除了基于连接性的方法外,还有其他方法旨在直接从活动域信息中提取动态性。例如,隐马尔可夫模型已用于从 fMRI 中的活动数据中估计几个隐藏状态(Karahano˘glu 和 Van De Ville,2017 年;Vidaurre 等人,2018 年)。其他方法要么直接将活动信息纳入管道(Fu 等人,2021 年),要么专注于基于活动(如功率)计算的指标(Chen 等人,2018 年)。此外,还有一系列基于大脑不同部分之间共同激活的方法,它们也直接将活动信息纳入分析管道(Liu 和 Duyn,2013 年;Karahanoglu 和 Van De Ville,2015 年)。在过去十年中,许多研究使用静息状态(Damaraju 等人,2014 年;Guo 等人,2014 年;Faghiri 等人,2021 年)和任务 fMRI(Boksman 等人,2005 年;Ebisch 等人,2014 年)比较了精神分裂症患者的大脑与健康对照者的大脑。最近,人们更加重视探索大脑动态方面的方法(Damaraju 等人,2014 年;Kottaram 等人,2019 年;Giufford 等人,2020 年;Faghiri 等人,2021 年)。使用动态方法,一些研究报告称个体的活力较低