ITT Cannon 制造市场上最高质量的产品;但是这些产品应按照本出版物中的规格使用。不建议任何偏离所述操作规格的使用或应用,并且可能不安全。本出版物中包含的任何信息和数据均不得解释为 ITT Cannon 承担任何责任。本出版物的任何新版本将自动使任何和所有以前的版本失效并取代它们。 ITT Cannon 产品适用有限保修。除了 ITT Cannon 根据本保修承担的义务外,ITT Cannon 不对任何损失、损坏、维修费用、任何类型的偶然或间接损害负责,无论这些损害是否基于明示或暗示的保修、合同、疏忽或与产品的设计、制造、销售、使用或维修相关的严格责任。产品可用性、价格和交货日期完全取决于我们各自的订单确认表;这同样适用于基于交付的开发样品的订单。本出版物不应被视为要约。它仅作为发出要约的邀请。通过本出版物,ITT Cannon 不对因使用本出版物而导致的任何专利侵权或其他第三方权利承担任何责任。通常允许转载本出版物,但需注明来源。Howe
电生理记录需要组织中低侵入性电极几何结构和高质量信号采集。在这里,我们提出了一种直径 < 10 μ m 的同轴电缆启发式针电极,它由针中的核心电极和另一个壳电极包围。通过对体内小鼠皮层进行多通道记录证实了这些电极的神经元记录能力。鉴于壳电极起着参考电极的作用,同轴电极还可以在组织内的局部区域进行差异记录。与没有参考壳电极的记录相比,差异记录显示出两倍高的信噪比,同时响度增加。这些结果表明,同轴微针电极将在电生理记录(包括离体和体外应用)中提供与体内记录类似的高质量神经元信号。
摘要 — 已经开发出一种支持新型微电子集成范式的工具,通过微同轴导线键合直接建立组件之间的互连。该工具的近期用例是促进高带宽系统的快速原型设计。当进一步成熟时,它将能够以最短的设计时间快速集成具有数百或数千个互连的复杂系统。总直径在 50 到 100 毫米之间的同轴导线的自动剥离和键合带来了一系列工艺挑战,对导线的材料系统和键合工具提出了有趣的要求。本研究回顾了 Draper 目前正在开发的一种微同轴键合系统,该系统能够剥离、送料和键合微同轴导线。该系统利用电火焰熄灭和热回流的组合分别剥离外部金属屏蔽层和聚合物介电层。它利用旋转送丝机制精确控制导线位置,从而可以确定预定的导线长度。回顾了电线、工具和软件控制架构设计的进展。
大型红外焦平面、滤光片或冷光学器件,目前使用更重的冷散热器。带有同轴脉冲管和挠性轴承压缩机的超小型、低质量低温冷却器的开发已经超越了之前描述的实验室版本 1,达到了工程模型成熟度。压缩机直接按比例缩小自 Northrup Grumman 的 TRL-9 飞行传统压缩机产品线。1,2,3,4 低温冷却器采用全焊接压缩机、小型轻型战术驱动电子设备和可与集成杜瓦组件接口的飞行式冷头。这种更成熟的冷却器实现在运行时受到随机和正弦振动,并未显示出永久性性能变化。它在剧烈振动下运行,在施加振动时仅表现出微小的性能变化。它已经过热性能测试,结果显示可重复早期开发模型的性能。
摘要:本文提出了一种共轴旋翼飞行器的滑模PID控制算法,之后采用Adams/MATLAB仿真与试验进行验证,结果表明该控制方法能够取得满意的效果。首先,当考虑上下旋翼间的气动干扰时,很难建立准确的数学模型,利用叶素理论和动态来流模型计算上下旋翼间的气动干扰和桨叶的挥动运动,其余不能准确建模的部分通过控制算法进行补偿。其次,将滑模控制算法与PID控制算法相结合对飞行器的姿态进行控制,其中,采用PID控制算法建立姿态与位置之间的关系,使飞行器能够更加平稳地飞行和悬停。第三,将飞行器的三维模型导入Adams,建立动力学仿真模型。然后在Simulink中建立控制器,并将控制器与动态仿真模型进行联合仿真,并通过仿真将滑模PID控制算法与传统PID控制算法进行比较,最后通过实验验证了滑模PID控制算法与传统PID控制算法的有效性。
摘要 -- 磁力齿轮与机械齿轮一样,在不同速度和扭矩之间转换动力;然而,磁力齿轮的非接触特性提供了比机械齿轮固有的潜在优势。使用遗传算法优化了不同温度下一系列齿轮比下的磁力齿轮。在不同的转子上以及切向和径向磁化磁体上使用不同等级的磁体材料可以稍微增加比扭矩,相对于使用单一磁体材料的设计。高极数转子需要比低极数转子磁体材料具有更高矫顽力的磁体材料,尤其是对于齿轮比较大的设计。虽然温度升高会导致可实现的比扭矩呈指数衰减,每升高 1 摄氏度复合减少约 0.4%,但温度不会显著影响最佳几何参数,主要影响最佳材料。齿轮比显著影响最佳几何参数,并会影响最佳磁体材料。此外,还采用遗传算法通过 3D 有限元分析来表征堆叠长度的影响。堆叠长度较短的设计有利于采用更薄的磁铁和更高的极数,并且可能能够使用矫顽力较低的磁铁材料。
量子霍尔效应 (QHE) 的研究需要使用同轴交流电桥将量子霍尔电阻 (QHR) 与音频频率下的可计算电阻标准进行比较 [1]、[2]、[3]。此类专用电桥经过优化,可在阻抗比较中提供最高精度 [4]。然而,这种高精度只能在有限的频率带宽内实现(通常在 500 Hz 和 5 kHz 之间),并且需要对电桥进行繁琐的手动平衡。只有少数尝试使用昂贵的自动感应分压器 (IVD) [5]、[6] 来实现交流同轴电桥的自动化。本文介绍了一种新型数字辅助电桥 [7]。精确的电压比仍由电压变压器提供,但是,通过调整数字源和检测器而不是 IVD 和锁定放大器,可以在更大的带宽(100 Hz 至 20 kHz)内自动完成精确比较阻抗所需的所有平衡。
摘要:癌症是全球最严重的健康问题之一,也是第二大死亡原因,随着老龄化和人口增长,与癌症相关的问题将持续存在。在对抗癌症的斗争中,已经开发出许多疗法和抗癌药物。化疗和相关药物广泛应用于临床实践;然而,它们的应用总是伴随着严重的副作用。近年来,纳米技术改进了药物输送系统,以减少输送药物的不良反应。在不同的候选材料中,同轴电纺制备的芯鞘纳米纤维因其独特的性能而脱颖而出,包括其大的表面积、高包封率、良好的机械性能、多药负载能力以及控制药物释放动力学的能力。因此,将药物封装在同轴电纺纳米纤维中是控制和持续释放药物的理想方法。本综述总结了不同结构和药物的同轴电纺纳米纤维在各种癌症治疗中的药物输送应用。
爆炸的粉末定向能量沉积经过精心设计,用于精细分辨率添加剂制造处理。同轴粉末沉积头使用由外喷嘴指向的屏蔽气体的外层,以防止在粉末熔化过程中发生氧化。粉末爆炸的原料集水效率可能低至50-80%,而电线沉积系统的效率更接近98%。本研究评估了定向能量沉积喷嘴条件对集水效率的影响。通过粉末流的收敛性,已经发现总体外部屏蔽气喷嘴长度的变化可将材料使用效率提高10%。该实验的结果表明,对于同轴粉末沉积头设计,如果可以安全地降低僵持距离,则随着外部屏蔽气喷嘴的长度增加或隔离距离降低,可以提高粉末流域效率。
摘要 呼吸是机体的重要生理过程,对维持人体健康起着至关重要的作用。基于可穿戴压电纳米纤维的呼吸监测因自供电、高线性、非侵入性和便捷性而受到广泛关注。但传统压电纳米纤维灵敏度有限,机电转换效率低,难以满足医疗和日常呼吸监测要求。这里我们提出了一种具有普遍适用性的高灵敏度压电纳米纤维,其特征是聚偏氟乙烯(PVDF)和碳纳米管(CNT)的同轴复合结构,记为PS-CC。在阐明渗透效应增强机制的基础上,PS-CC表现出优异的传感性能,灵敏度高达3.7 V/N,机电转换响应时间为20 ms。作为概念验证,纳米纤维膜无缝集成到面罩中,有助于准确识别呼吸状态。在一维卷积神经网络(CNN)的帮助下,基于PS-CC的智能口罩可以识别呼吸道和多种呼吸模式,分类准确率高达97.8%。值得注意的是,这项工作为监测呼吸系统疾病提供了有效的策略,并为日常健康监测和临床应用提供了广泛的实用性。