在制定 COCR 时,采用了以下方法:首先,利用未来通信的总体背景,基于现有的 ATM 发展概念制定第 1 阶段和第 2 阶段的操作概念。其次,使用此操作概念识别 ATS 和 AOC 数据通信服务。第三,定义将提供这些服务的操作环境,以确保解决每项服务的所有影响。第四,将服务分为 8 类;并对 8 类中的每一个进行安全性、安保性和性能评估。这些评估用于指定每个服务/类别的高级端到端要求。接下来,将高级端到端要求分配给 FRS。使用每种服务的操作方法,使用排队模型制定指示性性能和容量要求。这使得计算 FRS 需要支持的容量要求成为可能。COCR 包含两个性能结果的示例应用。
植入物相关感染(IAI)引起了重要的健康问题和医疗保健费用。在这项研究中,我们使用riganum vulgare作为前体材料,通过射频等离子体增强化学蒸气沉积(RF-PECVD)将石墨烯(GR)沉积在医学级钴 - 铬(CORC)合金表面上。使用拉曼光谱和X射线光电子光谱(XPS)和扫描电子显微镜(SEM)来确定GR上的GR沉积。投资了COCR-GR的生物相容性和抗菌特性。cocr-gr具有生物相容性,并促进了267.4个巨噬细胞的细胞粘附和扩散。cocr-gr是针对金黄色葡萄球菌和铜绿假单胞菌的抗菌性,并抑制了铜绿假单胞菌的附着。结果表明,COCR-GR可以用作可植入设备的潜在抗菌涂料材料。
[研究背景] 在当今的超老龄化社会中,因疾病或受伤而患有骨骼和关节疾病的人数增加正在成为一个问题,对于植入体内进行治疗的生物材料的需求日益增加。金属材料具有强度与延展性优异的平衡性,且机械可靠性高,因此被广泛用作必须支撑大负荷的骨替代植入物。 植入物需要具有优异的耐磨性和耐腐蚀性。但由于它是一种高强度的金属材料,其力学性能一般与柔韧的活骨有显著差异,而且其特别高的杨氏模量是有问题的。当植入物的杨氏模量远高于骨骼时,大部分力会施加在植入物上而不是周围的骨骼上(这种现象称为应力屏蔽),这会导致骨质萎缩、骨矿物质密度降低和骨折风险增加。因此,近年来,需要开发具有与活骨相当的低杨氏模量的新型金属材料。 临床上最常用的生物医学金属材料是价格低廉的不锈钢SUS316L、耐磨性优良的CoCr合金、杨氏模量相对较低的Ti(钛)合金。然而,不锈钢和现有的钴铬合金的杨氏模量大约比活骨高10倍。虽然存在杨氏模量较低的Ti合金,但其杨氏模量高于活骨,且存在耐磨性低的问题。目前,很少有金属材料能具有与活体骨骼相当的杨氏模量,同时还具有优异的耐磨性和耐腐蚀性。特别是,低杨氏模量这一重要的机械性能通常与高耐磨性之间存在权衡关系,开发出一种兼具这些特性的新型合金一直很困难。 另一方面,在尖端医疗中使用的超弹性合金中,表现出约8%超弹性应变的NiTi(镍钛)合金的应用最为广泛。然而,NiTi合金中含有较高的Ni元素,人们担心其可能会引起过敏反应。为此,人们开发出了不含Ni的Ti基超弹性合金,但其超弹性应变仅为NiTi合金的一半左右。 【主要发现】