背景:肿瘤血管生成已被证明可以增强肿瘤生长和Metas Tasis;因此,针对肿瘤相关血管生成的策略在抗肿瘤治疗方面具有巨大的潜力。方法:在这里,制备并表征了与姜黄素和combretastatin A-4磷酸盐(CUCA/GA&GAL-LIP)共同负载的GA和GAL双配体修饰的脂质体。建立了一种新型的“ BEL-7402+HUVEC”共培养细胞模型以模仿肿瘤微环境。针对新型共培养模型进行了细胞毒性和迁移测定。通过管形成测试评估血管生成能力,并通过肺转移测试评估体内转移能力。结果:结果表明,与其他联合组相比,双 - 配体修饰的脂质体显示出更大的肿瘤血管生成和转移的INHI生物。显着地,机理分析表明,姜黄素和combretastatin A-4 PhoS Phate可以通过下调VEGF和VEGFR2表达来抑制肿瘤血管生成和转移,并且GA&Gal-LIP可以通过GA/GAL介导的活跃的活力递送来改善抗肿瘤效应。结论:CUCA/GA&GAL-LIP具有抗肿瘤药物的靶向递送的巨大潜力,可以通过同时阻止VEGF/VEGFFFR2信号途径来实现抗血管生成和抗转移性效应,因此表现出了出色的抗肝瘤效应。关键字:双 - 配体修饰,脂质体,抗血管生成,VEGF,共递送
背景:肿瘤血管生成已被证明可以增强肿瘤生长和Metas Tasis;因此,针对肿瘤相关血管生成的策略在抗肿瘤治疗方面具有巨大的潜力。方法:在这里,制备并表征了与姜黄素和combretastatin A-4磷酸盐(CUCA/GA&GAL-LIP)共同负载的GA和GAL双配体修饰的脂质体。建立了一种新型的“ BEL-7402+HUVEC”共培养细胞模型以模仿肿瘤微环境。针对新型共培养模型进行了细胞毒性和迁移测定。通过管形成测试评估血管生成能力,并通过肺转移测试评估体内转移能力。结果:结果表明,与其他联合组相比,双 - 配体修饰的脂质体显示出更大的肿瘤血管生成和转移的INHI生物。显着地,机理分析表明,姜黄素和combretastatin A-4 PhoS Phate可以通过下调VEGF和VEGFR2表达来抑制肿瘤血管生成和转移,并且GA&Gal-LIP可以通过GA/GAL介导的活跃的活力递送来改善抗肿瘤效应。结论:CUCA/GA&GAL-LIP具有抗肿瘤药物递送的巨大潜力,可以通过同时阻止VEGF/VEGFFFR2信号途径来实现抗血管生成和抗转移性效应,因此表现出了出色的抗肝瘤效应。关键字:双 - 配体修饰,脂质体,抗血管生成,VEGF,共递送
小鼠移植肿瘤的血管网络通常比自发性肿瘤更脆弱。自发性肿瘤是由遗传突变或暴露于致癌物中的,并且在几个月内生长缓慢,更像人类肿瘤。在移植和自发性肿瘤之间通过静脉内给予的BAC代理对肿瘤定植的比较表明,后者含有较少的细菌[12]。有趣的是,通过施用脉管系统中断剂(VDA),combretastatin a4磷酸盐(CA4P),自发性肿瘤的定殖显着改善。VDA促进细菌从脉管系统中逸出到肿瘤中,并导致肿瘤组织的坏死,从而扩大细菌可以繁殖的小裂(图1)。在横纹肌肉瘤中进行了类似的观察结果
我们开发了一种简单的方法来制造微笼和笼状肿瘤球体,用于基于微流控芯片的检测。微笼装置由一系列蜂窝状隔间组成,底部有一层交联和琼脂糖涂层的明胶纳米纤维,顶部有一个 200 μm 孔径的网格。U87-MG 单细胞分散在网格中,孵育后肿瘤球体被限制在每个笼子隔间中。正如预期的那样,肿瘤球体以相同的大小一个接一个地分布在每个隔间中,并且在隔间内生长。球体的最终尺寸受到扩散和限制的限制。如果笼子的高度较小,则肿瘤下方的纳米纤维层可能会因生长中的肿瘤的机械应力而发生偏转。如果笼子的高度很大,肿瘤会自由生长而不受压力,但其大小会受到扩散的限制。在这两种情况下,肿瘤往往保持球形。为了说明该方法的稳健性,将肿瘤笼状装置可逆地集成到用于药物测试的微流体芯片中。我们的结果表明,在切向流条件下,考布他汀 A-4 对肿瘤分解有明显的影响。
摘要:间变性甲状腺癌 (ATC) 是一种罕见且致死率极高的癌症,是所有甲状腺癌 (TC) 组织学亚型中预后最差的,且无标准治疗方法。近年来,针对 ATC 靶向药物的研究激增,为这种恶性疾病提供了新的治疗策略,有必要对这些研究进行回顾。我们对 ATC 靶向药物研究进行了全面的文献检索,并总结了它们的疗效和不良反应 (AE),以提供新的见解。多项临床试验证明了达拉非尼联合曲美替尼治疗 ATC 的疗效和安全性,但维莫非尼和 NTRK 抑制剂的临床反应有限。我们发现先前评价的仑伐替尼治疗效果可能并不令人满意;酪氨酸激酶 (TK) 抑制剂 (TKI) 与其他药物联合使用可获得更高的临床获益率。此外,特定药物,包括 RET 抑制剂、mTOR 抑制剂、CDK4/6 抑制剂和 Combretastatin A4-磷酸盐 (CA4P),具有巨大的治疗潜力。所有药物报告的不良反应相对较多,但在临床上基本上是可控的。预计会有更多临床试验进一步证实这些靶向药物对 ATC 的有效性和安全性。
摘要三阴性乳腺癌(TNBC)是乳腺癌最具侵略性的亚型,这是大多数与乳腺癌相关的死亡。由于缺乏特定的治疗靶标,化学治疗剂(例如,紫杉醇)仍然是全身治疗的主体,但丰富了具有肿瘤发射能力和称为癌症干细胞(CSC)的肿瘤发射能力和类似干燥特征的细胞的亚群;因此,开发一种新的有效策略进行TNBC治疗是一种未满足的医疗需求。癌症纳米医学已改变了癌症药物发展的景观,从而允许使用高治疗指数。在这项研究中,我们通过在聚合物 - 脂质杂交纳米颗粒(NPS)中共同包裹临床批准的药物(例如紫杉醇,verteporfin和combretastatin(CA4)),开发了一种新的疗法。vertepor-fine是一种用于治疗黄斑变性的药物,最近被发现抑制了河马/YAP(与是相关的蛋白质)途径,该途径已知可以促进乳腺癌的进展和CSC的发展。CA4是一种血管破坏剂,已在临床试验的II/III期中进行了测试。我们发现,我们的新三种NP不仅有效地抑制了TNBC细胞的活力和细胞迁移,而且还显着减少了紫杉醇诱导的TNBC细胞中CSC富集和/或CA4诱导的CSC富集,部分通过抑制上调的HIPPO/YAP信号来部分。vertepor -fifin和Ca4的组合在抑制体内斑马模型中的血管生成方面也比单独的单独药物更有效。通过使用临床相关的患者衍生异种移植(PDX)模型,进一步评估了三重药物-NP的效率和应用潜力。三重药物-NP有效地抑制了PDX器官幻灯片培养物的生存能力,并阻止了体内PDX肿瘤的生长。这项研究开发了一种能够同时抑制大量癌细胞,CSC和血管生成的方法。
血管破坏剂是一类有趣的抗癌化合物,因为它们具有防止新血管形成和破坏实体肿瘤微环境中现有血管的综合作用模式。由于缺乏适当的体外血管生成模型(包括成熟且长寿命的血管样网络),因此很少对这些药物的体外血管破坏特性进行验证。我们在此报告了一种人脐静脉内皮细胞 (HUVEC) 和人真皮成纤维细胞 (HDF) 的间接共培养模型,以形成三维丰富的血管样网络。嵌入并夹在胶原支架中的 HUVEC 与位于支架外部的 HDF 共培养。间接共培养方法与产生血管内皮生长因子 (VEGF) 的 HDF 一起,在不到 7 天内触发了逐渐成熟的管腔化血管样内皮细胞网络的形成,并且已证明这些网络在培养 21 天后仍可存活。分子量依赖性德克萨斯红葡聚糖通透性研究表明,生成的网络具有较高的血管屏障功能。它们的寿命使我们能够通过半定量明场和定性共聚焦激光扫描显微镜 (CLSM) 图像分析研究用三种已知的抗血管生成和/或血管破坏剂布立尼布、考布他汀 A4 磷酸盐 (CA4P) 和 6'- 唾液酸半乳糖 (SG) 治疗后的剂量依赖性反应。与这些药物在抗血管生成和血管破坏作用方面的体内疗效报告数据相比,我们在 3D 模型中观察到了类似的趋势,而这在传统的体外血管生成试验中并未反映出来。在成熟血管样网络的持续处理下,在浓度 ≥ 3.5 ng · ml − 1 (CA4P) 和 ≥ 300 nM (brivanib) 下观察到高血管破坏。相反,SG 在体外未能诱导任何显著的血管破坏。这种先进的 3D 血管样网络模型允许以优化剂量测试单一和组合抗血管生成和血管破坏作用,因此可以弥合体外和体内实验在验证高通量筛选命中结果方面的差距。此外,模拟生理 3D 环境的体外试验不仅与癌症相关的体内研究高度相关,而且与组织再生领域也高度相关。