将立即通过增强的镜像视频显示,并与他们的学生一起视觉实现。以这种方式,我们的方法赋予了教学的能力,其概念的内在形式被称为角色实施例[Keevallik 2010],在该概念上,学生可以通过视觉吸引学生作为历史人物,科学专业人士或文化偶像,从而创造出更丰富,更沉浸式的学习经验,以实现的角色扮演[CarniceroerPérezet al al and。2023]。要以更高的精确度来完善和直接产生图像,这项研究特别结合了ControlNet,这是一种稳定扩散的开发,旨在增强对生成的输出的控制,从而确保视觉转换与文本提示的教育目标和提供的相机输入图像Snapshot [Zhang等人[Zhang et al》中均符合。2023]。上游,我们整合了语音识别,以将自然的口语接口与受控的导向图像生成相关。生成的AI模型,例如DALL-E或GPT4,可以从文本描述中综合高保真视觉内容。尽管它们的实用性,这些模型从根本上受到其对文本的依赖的限制,因为它们是唯一的条件输入。此约束限制了其将生成的输出调整为结构化空间输入的能力,例如深度图,语义分割掩码或姿势配置。因此,此类模型不适合需要与实时背景(例如交互式环境和实时个人化)进行精确对齐的应用。2021]。2020]。2020]与ControlNet结合[Zhang等。相比之下,ControlNet通过启用多模式输入模式(包括深度图)的整合到生成过程中来解决这一差距。深度调节是将视觉输出与参与者的物理概况(例如身体形状和空间布置)进行实时设定的关键。此功能将生成模型的适用性扩展到需要上下文和参与者特定输出的域。通过利用基于深度的调节,ControlNet促进了视觉效果的产生,这些视觉效果不仅在语义上是准确的,而且在空间上是连贯的,从而支持了新颖的应用,例如具有体现的角色扮演和沉浸式,上下文感知的教育体验。通过生成AI的角色体现与沉浸式学习的研究保持一致,当学生在教育场景中扮演角色或角色时,学生更加深入地参与。研究表明,体现历史人物的体现会发展出同理心并增强记忆力保留,因为学生与材料有着共同的联系[Miguel-Revilla等。类似地,在STEM领域,学生可以通过诸如科学家,工程师或宇航员等原型横向探索角色,这些原型将其转化为对主题的更强识别并支持持续的参与[Singer等人。更详细地探索了各种文化舞蹈风格,作为教学场景,以更直接的舞蹈学生与视觉体现的教学环境联系起来。本文采用了稳定扩散的机制引入了一个框架[Ho等。2023]实现适用于教学环境中的有针对性的特定角色转换。这种集成使受控的视觉自定义符合教室内成像的人类形式,从而使教育工作者可以设计具有与各种主题的教育目标相吻合的沉浸式,上下文准确的体验。本文的主要技术贡献是:
读者 本手册介绍了用于 ControlNet 网络的 AMCI SSI 数字接口的操作、安装和编程。本产品的模块编号为 NX2E4C。该装置最多可接受四个 SSI 传感器。它从 SSI 流中提取数据值,然后将其缩放为工程单位。NX2E4C 还计算数据值的变化率。数据值和变化率信息的含义取决于 NX2E4C 使用的传感器类型。SSI 压力传感器报告压力值,NX2E4C 计算每秒的压力变化。位置传感器报告位置值,NX2E4C 计算移动部件每秒的位置变化,即速度。
人工智能(AI)的最新进步通过创新的工具和方法彻底改变了各个领域,标志着创造性学科的重大转变,包括景观建筑。开创性的AI驱动工具,例如Midjourney,稳定的差异和Adobe Photoshop中的生成填充功能,为产生各种视觉输出而开辟了新的视野。这些工具超出了Fernberg(2023)概述的效果的2D资产的能力之外,还通过开源进步的出现(例如ControlNet和Lora)出现了稳定的扩散。这些进步使设计师能够精确控制图像到IM-IM-IM-年龄生成过程。这些工具的应用是多种多样的,包括重新上色的线条图纸,将草图转换为详细的效果图,将3D模型转换为渲染以及自定义视觉样式等。
六月研究助理。2020年 - 2024年8月•大型语言模型(LLMS)内的长期杂项机器人学习的发展状态空间建模,LLMS在维护州跟踪的同时执行计划和推理。•体现的AI:提出的diff -Control,一种将控制网络从图像生成到机器人动作的范围的动作扩散策略。[C7]•使用注意机制和可区分的过滤创建了一个多模式学习框架(𝛼 -MDF),该滤波器在潜在空间中进行多种模式的状态估计。[C5]•开发了可区分的集合Kalman过滤器(DENKF)框架,其中包含用于机器人学习的算法先验,即从观察值中学习系统dy -namics,以及从高维空间中的学习表示形式。[C4]•用智能手表部署了无处不在的机器人控制任务的智能滤波框架,即,电视,无人机驾驶。[C6]
最近进步[20,29,30]中的2D图像结构,以方法为例,例如在广泛的文本图像配对数据集中受过训练的扩散模型(例如,Laion-series [31]),在与文本提示符的一致性图像中取得了显着的前进。尽管取得了成功,但实现对图像产生的精确控制以满足复杂的用户期望仍然是严重的挑战。ControlNET [38]通过在特定条件数据集上进行微调修改Foun-odation-2D扩散模型来解决此问题,从而提供由用户特异性输入引导的微妙控制机制。另一方面,尽管有希望的进展[27,35],但与2D图像生成中遇到的那些相比,3D对象的生成更为复杂。al-尽管从透视感中观察到了进步,包括直接3D数据集[10,25]上的3D扩散模型,以及将2D扩散率提升到3D复位(例如NERF [21])通过SDS损失的技术优化[27],没有完全对生成Ob-Ob-ob-ob-ob-jects的控制。对初始文本提示或2D参考图像的依赖严重限制了发电的可控性,并且通常会导致质量较低。文本提示缺乏准确传达复杂3D设计的特异性;尽管2D参考图像可以告知3D重建,但它们并没有捕获3D结构的完整深度,可能导致各种意外的人类。此外,基于2D图像的个性化缺乏直接3D操纵可以提供的灵活性。这些障碍表明需要采取不同的策略。实现可控制的3D发电的直接想法是将控制网络调整为3D生成。但是,该策略遇到了重大障碍:(i)3D的控制信号本质上更为复杂,这使得与2D范式相比,有条件的3D数据集对构成的3D数据集进行了挑战; (ii)3D域中没有强大的基础模型,例如2D [20]的稳定扩散,阻碍了此时开发微调技术的可能性。结果,我们倾向于
图像和视频着色是图像恢复中最常见的概率之一。这是一个不足的问题,已经提出了多种方法,从更传统的计算机视觉策略到具有基于变压器或生成的神经网络模型的最新开发。在这项工作中,我们展示了如何对文本到图像综合进行预培训的潜在扩散模型,以进行图像着色,并为各种场景提供了灵感的解决方案:高质量的直接着色,并具有多样化的效果,并通过用户指导的颜色,通过色彩勾勒,文本图像或参考图像或网状色彩和纯净的颜色和纽约。一些已经使用分解模型进行了调查的一些作品,但是所提出的SO措施通常更为复杂,需要训练指导DeNoising Process(àlaControlNET)的侧模型。这种方法不仅增加了参数的数量和计算时间,而且还会在我们显示的时导致次级最佳着色。我们的评估
其次,在ID插入后,它仍应保留原始T2i模型遵循提示的能力。在ID自定义的上下文中,这通常意味着更改ID属性的能力(例如,年龄,性别,表情和头发),方向和配件(例如,眼镜)通过提示。为了获得这些功能,当前的解决方案通常分为两类。第一类涉及增强编码器。iPadapter [50,1]从网格特征的早期剪辑提取到利用面部识别主链[6]来提取更多抽象和相关的ID信息。尽管提高了编辑性,但ID保真度不够高。InstantID [44]通过在此基础上包括一个额外的ID和Landmark ControlNet [52]以进行更有效的调制。即使ID相似性大大提高,它也会损害某种程度的编辑性和灵活性。第二类方法[22]支持非重构培训,以通过构造由ID分组的数据集来增强编辑性;每个ID都包含几张图像。但是,创建此类数据集需要巨大的努力。此外,大多数ID对应于有限数量的名人,这可能会限制其对非赛车的有效性。
生成模型(例如扩散模型)的最新进展使生成高质量的合成IMEGES可以广泛访问。先前的作品表明,对合成图像进行培训可以改善许多感知任务,例如图像分类,对象检测和半分割。我们是第一个探索生成数据增强的人。我们提出了Scribblegen,这是一种生成数据增强方法,该方法利用ControlNET扩散模型,该模型以语义涂鸦为条件,以产生高质量的训练数据。但是,生成数据增强的幼稚实施可能会无意中损害下游分段的性能,而不是改善它。我们利用无分类器扩散指南来执行类的一致性,并引入编码ratios来将数据多样性换成数据现实主义。使用指导量表和编码比率,我们可以生成一系列高质量训练图像。我们提出了多个增强方案,发现这些方案显着影响模型性能,尤其是在低数据制度中。我们的框架进一步减少了涂鸦监督段的性能和完全监督的分割之间的差距。我们还表明,我们的框架显着改善了小数据集上的细分性能,甚至超过了完全监督的细分。该代码可在https://github.com/mengtang-lab/scribblegen上找到。
生成模型(例如扩散模型)的最新进展使生成高质量的合成IMEGES可以广泛访问。先前的工作表明,对合成图像进行培训可以改善许多感知任务,例如图像分类,对象检测和半分割。我们是第一个探索涂鸦审议语义序列的生成数据增强。我们提出了Scribblegen,这是一种生成数据增强方法,该方法利用ControlNET扩散模型,该模型以语义涂鸦为条件,以产生高质量的训练数据。但是,生成数据增强的幼稚实施可能会无意中损害下游分段的性能,而不是改善它。我们利用无分类的扩散指南来执行类的一致性,并引入编码ratios来将数据多样性换成数据现实主义。使用指导量表和编码比率,我们可以生成一系列高质量训练图像。我们提出了多个增强方案,并发现这些方案显着影响模型性能,尤其是在低数据状态下。我们的框架进一步减少了涂鸦监督段的性能和完全监督的分割之间的差距。我们还表明,我们的框架显着提高了小数据集上的细分性能,甚至超过了完全监督的细分。该代码可在https://github.com/mengtang-lab/scribblegen上找到。
准确的湍流预测非常昂贵,因为它需要一个限定时间的时间步骤来推进管理方程以解决快速发展的小规模动作。随着各种机器学习(ML)算法的最新开发,有限的时间预测成为减轻计算负担的有希望的选择之一。然而,对小规模动议的可靠预测具有挑战性。在这项研究中,开发了基于生成对抗网络(GAN)的数据驱动的ML框架的预测网络,用于快速预测湍流,使用相对较少的参数,高精度降至最小的湍流。特别是,我们使用直接的数值模拟数据在有限的交货时间内学习了二维(2-D)腐烂的湍流。开发的预测模型可以在有限的交货时间内准确地预测湍流场,最多是Eulerian积分时间尺度的一半,大规模动作保持相当相关。量表分解用于解释可预测性,具体取决于空间量表,并研究了潜在变量在歧视者网络中的作用。GAN在预测小规模的湍流中的良好性能归因于潜在变量的尺度选择和尺度相互作用能力。此外,通过利用预测网络作为替代模型,开发了一个名为ControlNet的控制模型,以识别驱动流量段的时间演变的扰动模型,以优化指定目标函数的方向。