摘要 --- 参数设计对于确保功率转换器的整体性能令人满意具有重要意义。通常,功率转换器的电路参数设计包括两个过程:分析和推导过程和优化过程。现有的参数设计方法包括两种类型:传统方法、计算机辅助优化(CAO)方法。在传统方法中,需要严重依赖人。即使新兴的 CAO 方法使优化过程自动化,它们仍然需要手动的分析和推导过程。为了减轻对人的依赖以实现高精度和易于实施,本文提出了一种基于人工智能的设计(AI-D)方法用于功率转换器的参数设计。在提出的 AI-D 方法中,为了实现分析和推导过程的自动化,采用仿真工具和批量归一化神经网络(BN-NN)为优化目标和设计约束构建数据驱动模型。此外,为了实现优化过程的自动化,使用遗传算法来搜索最佳设计结果。所提出的 AI-D 方法在电动汽车 48 V 至 12 V 附件负载电源系统中同步 Buck 转换器的电路参数设计中得到了验证。给出了效率最优的同步 Buck 转换器的设计案例,该转换器在体积、电压纹波和电流纹波方面均有约束。最后,通过硬件实验验证了所提出的 AI-D 方法的可行性和准确性。索引术语 - 功率转换器、参数设计、人工智能、进化算法、神经网络。
经济高效、紧凑可靠:SFC 6000H 系列静态 GPU 为直升机、军用喷气式飞机和小型民用飞机提供 400Hz 机库电力,提供最具成本效益和灵活性的方式。通过采用最先进的电子设计,SFC 6000H 型号不仅在各自的功率等级中非常紧凑,而且非常安静。这意味着人员可以在它们附近工作,而不会产生通常与 400Hz 转换器相关的令人疲劳的噪音。统一输入功率因数:先进的前端设计确保所有型号的输入功率因数接近 1。这意味着几乎没有被拒绝的谐波,输入功耗最小化,整体转换器效率最大化。
电源电压(V DD – GND)7 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 参考输入电压范围,V ID GND – 0.3 V 至 V DD + 0.3 V . . . . . . . . . . . . . . . . . . 工作自然通风温度范围,T A :TLC5620C 0 ° C 至 70 ° C . . . . . . . . . . . . . . . . . . . . TLC5620I –40 ° C 至 85 ° C . . . . . . . . . . . . . . . . . 存储温度范围,T stg –50 ° C 至 150 ° C . . . . . . . . . . . . . . . . . . . . 距外壳 1.6 毫米 (1/16 英寸) 处的引线温度 10 秒内为 260 ° C . . . . . . . . . . . . ....... ....... ....... ....... .......
摘要 —本文提出了一种用于电力电子转换器系统控制的新型应用方法,即人工智能的逆向应用 (IAAI)。与传统方法相比,IAAI 仅依赖于数据驱动过程,无需优化过程或大量推导,因此该方法可以以简单的方式给出所需的控制系数/参考。需要注意的是,IAAI 方法使用人工智能为电力转换器控制提供可行的系数/参考,而不是构建新的控制器。在说明 IAAI 概念之后,讨论了一种传统的人工神经网络 (ANN) 应用方法,即基于优化的设计。然后,研究了双源转换器微电网案例,通过基于优化的方法选择最佳下垂系数。之后,将提出的 IAAI 方法应用于相同的微电网案例,以快速找到良好的下垂系数。此外,IAAI 方法应用于模块化多电平转换器 (MMC) 案例,扩展了不平衡电网故障下的 MMC 操作区域。在MMC案例中,模拟和实验在线测试均验证了IAAI的可操作性、可行性和实用性。
5VDC。请注意,使用两个串联的 MOSFET 来承受更高的线路输入电压。AHP2815D (B) 将 28VDC 转换为稳压的 ±15VDC。输出调节使用 PWM 技术,并控制输出调节、过载保护、UV 检测和保护、软启动和输入过压保护。AHP 系列采用专有磁脉冲反馈技术,提供最佳的动态线路和负载调节。该反馈系统以脉冲宽度调制器固定时钟频率对输出电压进行采样;标称频率为 550kHz。初级和次级参考 ENABLE 电路提供便利和控制,可使用事件或信号随意打开和关闭转换器。驱动电路增强 PWM 的输出,以提供足够的 di/dt 来打开或关闭 MOSFET。小型栅极驱动变压器为驱动 AHP270XX 转换器中的上部 MOSFET 提供隔离。整个单元在闭环中工作,确保快速动态响应和稳定的性能。
经济高效、紧凑可靠:SFC 6000H 系列静态 GPU 为直升机、军用喷气式飞机和小型民用飞机提供 400Hz 机库电力,提供最具成本效益和灵活性的方式。通过采用最先进的电子设计,SFC 6000H 型号不仅在各自的功率等级中非常紧凑,而且非常安静。这意味着人员可以在它们附近工作,而不会产生通常与 400Hz 转换器相关的令人疲劳的噪音。统一输入功率因数:先进的前端设计确保所有型号的输入功率因数接近 1。这意味着几乎没有被拒绝的谐波,输入功耗最小化,整体转换器效率最大化。
SIMOREG DC MASTER 变频器不仅在符合国际标准方面是全球性品牌。在西门子全球服务网络的背景下,服务并不止于精细调整的物流概念,以实现短交货时间、快速订单处理和及时服务。我们在 110 多个国家/地区设有 180 多个服务中心,全天候待命以解决故障并为产品和系统的所有方面提供个性化的业务服务。作为专业服务提供商,我们的 OnCall 服务提供技术专业知识和物流以及确保高效服务访问所需的所有其他组件。
5VDC。请注意,使用两个串联的 MOSFET 来承受更高的线路输入电压。AHP2815D (B) 将 28VDC 转换为稳压的 ±15VDC。输出调节使用 PWM 技术,并控制输出调节、过载保护、UV 检测和保护、软启动和输入过压保护。AHP 系列采用专有磁脉冲反馈技术,提供最佳的动态线路和负载调节。该反馈系统以脉冲宽度调制器固定时钟频率对输出电压进行采样;标称频率为 550kHz。初级和次级参考 ENABLE 电路提供便利和控制,可使用事件或信号随意打开和关闭转换器。驱动电路增强 PWM 的输出,以提供足够的 di/dt 来打开或关闭 MOSFET。小型栅极驱动变压器为驱动 AHP270XX 转换器中的上部 MOSFET 提供隔离。整个单元在闭环中工作,确保快速动态响应和稳定的性能。
摘要:本研究提出了一种设计电力电子转换器的方法,称为“面向制造的自动设计”(ADFM)。该方法建议使用标准化转换器单元创建电源转换器阵列 (PCA)。该方法受到微电子集成电路设计流程、电力电子构建块和多单元转换器的极大启发。为了实现所需的电压/电流规格,PCA 转换级由多个转换标准单元 (CSC) 串联和/或并联组装而成。ADFM 使用基于数据的模型来模拟 PCA 的行为,计算工作量极小。这些模型需要一种特殊的特性描述方法来最大限度地增加知识量,同时最大限度地减少数据量。这种方法包括制定实验计划以选择包含有关 PCA 技术最多信息的相关测量,构建能够自动获取数据的实验装置,并使用统计学习来训练能够产生精确预测的模型。本研究在九个不同的 PCA 中进行了超过 210 小时的测试,以便将数据收集到统计模型中。这些模型预测了几种 PCA 的效率和转换器温度,并将准确度与实际测量值进行了比较。最后,使用这些模型比较了特定电池充电应用中 PCA 的性能。
电源电压,V CC (见注释 1) 6.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .输出电压范围 –0.3 V 至 V CC + 0.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 峰值输入电流范围(任何输入) ± 10 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .峰值总输入电流范围(所有输入)± 30 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 工作自然通风温度范围,TA(见注释 2):TLC548C、TLC549C 0 ° C 至 70 ° C . . . . . . . . . . . . . . TLC548I、TLC549I –40 ° C 至 85 ° C . . . . . . . . . . . . . 存储温度范围,T stg –65 ° C 至 150 ° C . . . . . . . . . . . . . . . . . . . . 距外壳 1,6 毫米 (1/16 英寸) 处的引线温度 10 秒内 260 ° C . . . . . . . . . . . . . . . . .