IIIA型粘多糖化病(MPS IIIA)患者缺乏溶酶体酶磺酰酶(SGSH),这对于硫酸乙酰肝素(HS)的降解而言是可重点的。尚未依赖的HS的积累会导致严重的进行性神经变性,目前尚无治疗。在MPS IIIA的小鼠模型中评估了载体腺相关病毒(AAV)RH.10-CAG-SGSH(LYS-SAF302)纠正疾病病理的能力。lys-SAF302以三种不同剂量(8.6e+08、4.1e+10和9.0e+10+10个载体基因组[VG]/动物)注射到尾状pe虫/纹状体/纹状体和thalamus的三种不同剂量(8.6e+08、4.1e+10和9.0e+10和9.0e+10载体基因组[VG]/动物)中施用。lys-SAF302能够依赖于纠正剂量或显着降低HS储存,GM2和GM3神经节蛋白的继发性积累,泛素反应性轴突球体,溶酶体膨胀,溶酶体膨胀以及毒液膨胀在12周和25周后的神经毒素流量。要研究大动物大脑中的SGSH分布,将LYS-SAF302注入了狗的皮层白质(1.0e+12或2.0e+12 Vg/Animal)和cynomolgus猴子(7.2e+11 Vg/an-imal)。在78%(注射后4周)中检测到78%的SGSH酶活性至少高于内源水平的20%(狗)的增加至少高于内源性水平。综上所述,这些数据验证了脑室内AAV的给药,作为实现MPS IIIA中疾病疾病的广泛酶分布和纠正的有前途的方法。
在怀孕期间不应使用semaglutide。用semaglutide治疗时,建议使用生育潜力的妇女使用避孕药。如果患者希望怀孕或怀孕,则应停止使用semaglutide。应在计划怀孕之前至少2个月停止二氯丁物(请参阅第5.1节的药效特性)。在器官发生过程中施用半瓜肽时,动物的研究表明生殖毒性。在亚临床等离子体暴露时观察到孕妇大鼠的胚胎毒性(致死性,生长受损和胎儿异常发生率增加)。的机理研究表明,Semaglutide对大鼠某些作用的直接GLP-1受体介导的作用(物种特异性)。在怀孕的兔子中,在所有剂量水平上都观察到了孕妇体重增加和食物消耗的药理介导的减少。在临床相关暴露时,观察到≥0.0025mg/kg/day的较小内脏(肾脏,肝)和骨骼(胸骨)胎儿异常的发生率增加。In pregnant cynomolgus monkeys, pharmacologically mediated, marked initial maternal body weight loss and reductions in body weight gain and food consumption coincided with the occurrence of sporadic abnormalities (vertebra, sternebra, ribs) and with an increase in early pregnancy losses at ≥0.075 mg/kg twice weekly (>2.7 fold clinical exposure at 1毫克/周)。在所有物种中,在Noael处的暴露都是亚临床的,不能排除semaglutide对胎儿的直接影响。
前言 基因组编辑技术已被确定为实现《非洲联盟 2063 年议程》而增强现有干预措施的潜在新选择。随着基因组编辑工具变得更加精细,预计用于基础研究、保护、农业、公共卫生和其他目的的基因组编辑技术的拟议应用可能会继续扩大。 基因组编辑在植物和动物改良以及医学领域有广泛的应用。例如,成簇的规律间隔短回文重复序列 (CRISPR) 已被用于编辑水稻基因组,从而改善与产量相关的性状,例如密集而直立的圆锥花序和降低植株高度;开发晚花大豆,导致营养体大小增加;开发抗柑橘溃疡病的柑橘植物;生成适合人类疾病建模的动物,例如 CRISPR 编辑的食蟹猴,用于研究无法在小鼠身上充分研究的脑部疾病;用于治疗人类免疫缺陷病毒 (HIV) 的研究等。为应对基因组编辑技术的不断进步,管理局通过广泛的利益相关方协商和审查已部署此类技术的其他国家的监管机制,制定了一份指导文件,以确定基因组编辑技术的监管流程。该文件涵盖了实施的各个方面,以及该国的基本测试途径和实施策略,同时考虑到所有可能的社会文化和伦理问题。本文件并非旨在详细说明如何进行基因组编辑产品的风险评估和风险管理。
具体而言,NIOSH 已确定利拉鲁肽的致癌危害很可能是通过有丝分裂原 1 作用模式产生的,需要长期持续全身暴露(见下文致癌性)。NIOSH 还发现,发育毒性不太可能仅与母体食物摄入量减少有关,因为除了幼崽体型减小外,胎儿死亡和胎儿畸形的发生率也增加(见下文发育毒性)。NIOSH 同意制造商的观点,即现有数据显示,利拉鲁肽通过口服和吸入途径在大鼠和比格犬中的全身生物利用度低于 0.1% [Sauter 等人,2019 年;Uhl 等人,2020 年]。在食蟹猴中,吸入的生物利用度在 0.6% 到 1.7% 之间 [Nordisk 2020],在比格犬中不到 0.1% [Sauter et al. 2019]。这一证据表明,在职业环境中吸入和食入利拉鲁肽不太可能产生足够高的剂量来引起实验室研究中观察到的致癌或发育影响。同样,皮肤是利拉鲁肽等肽的全身生物利用度的高度限制屏障,皮肤吸收不太可能成为医疗环境中利拉鲁肽全身暴露的重要途径。职业性利拉鲁肽暴露可能由针刺等锐器伤引起。然而,在大多数医疗保健工作场所,针刺伤很少见,并且不太可能产生在实验动物中观察到的毒性所需的长期皮下暴露。偶尔可能会发生通过皮肤、口腔或吸入途径的职业暴露。然而,这些暴露不太可能导致显著的全身暴露,因为利拉鲁肽通过这些途径的全身生物利用度较低。
70 在肾细胞癌 (RCC) 中高度表达,而在正常组织中表达有限,这使其成为治疗免疫原性实体瘤的有吸引力的 CAR-T 靶点。在这里,我们生成并表征了一组基于抗 CD70scFv 的 bAR T 细胞。尽管 T 细胞上表达 CD 70,但仍从具有强体外活性的一组 scFv 中产生了 CAR-T。发现 CD 70CAR 的表达掩盖了顺式 CD 70 检测并提供针对 CD 70CAR T 介导的自相残杀的保护。已鉴定出两种独特的 CAR-T 细胞类别,它们具有不同的记忆表型、活化状态和细胞毒活性。表位图谱显示,与结合 CD 70ECD 膜近端区域的 CAR 相比,结合 CD 70ECD 膜远端区域的 CAR 属于活性更高、分化程度更高的类别。 CD 70CAR T 细胞使用利妥昔单抗的开关进行评估,以控制 CAR T 功能,并在小鼠模型中显示出对 RCC 细胞系和患者来源的异种移植瘤的强大抗肿瘤活性。评估与两种主要 CAR 脱靶结合的组织交叉反应研究显示,在罕见的组织常驻淋巴细胞中出现膜染色,从而与已知的 CD 70 表达模式相匹配。在食蟹猴 CD 3-CD70 双特异性毒性研究中观察到与 T 细胞活化和 CD 70 表达细胞消除相关的预期结果,包括细胞因子释放和淋巴组织中的细胞丢失。最后,通过 TALEN® 基因编辑消除 T 细胞受体,大规模生产了高功能性 CD 70 同种异体 CAR T 细胞。综上所述,这些功效和安全性数据支持对 CD 70CAR T 细胞用于治疗 RCC 的评估,并推动同种异体 CD c 70CAR T 候选药物进入 I 期临床试验。(A)
抽象的环境:几种方法,例如抗体药物缀合物(ADC),嵌合抗原受体T细胞(CAR-T)和最近的双特异性抗体,已成功引入了B细胞淋巴瘤治疗中的创新武器。但是,对于罕见的T细胞淋巴瘤和白血病(例如PTCL),五年内的五年生存率在20多年中没有提高,并且迫切需要新的疗法。lis22,是类糖 - 人性化的多克隆抗体(GH-PAB)的第一个,同时针对多种肿瘤相关的抗原。在这项研究中,我们广泛地表征了LIS22在T细胞血液癌的临床前模型中的安全性和功效。材料和方法:LIS22诱导抗体依赖性细胞毒性(ADCC),抗体依赖性细胞吞噬作用(ADCP),补体依赖性细胞毒性(CDC)和凋亡对血液学细胞细胞系和外围血液中的血液学细胞系和凋亡进行了测试。为了评估LIS22in PTCL患者的靶向和识别,我们使用组织微阵列(TMA)评估了LIS22对患者活检(n = 119)的免疫标记。LIS22的疗效。在单鼠猴子中评估了该药物的药代动力学和安全性,并重复发给50mg/kg。结果:LIS22通过几种机制起作用,以30µg/ml的速度起作用,它通过CDC(以70%),ADCP(以49%)的形式诱导细胞毒性,ADCC(分别为41%)(41%)和凋亡(分别为30%)HPB-All Human T血液癌细胞系,但在PBMC中不进行。它能够杀死多达100%的癌细胞而不会影响PBMC。lis22在血液学恶性细胞系中表现出有效的体外抗肿瘤活性,它诱导了特定的肿瘤细胞CDC(EC50 = 41.4±28.9Ug/ml)。均显示出对T细胞血液癌的效力明显更高,对健康血细胞的毒性没有毒性。在免疫标记测定中,对PTCL患者活检(染色高达93%)的LIS22示例性反应。
免疫疗法彻底改变了癌症治疗。但是,对于大多数晚期实体瘤患者,尚未实现持续的临床益处。髓样细胞(如单核细胞和巨噬细胞)很容易积聚在肿瘤中,在某些情况下,肿瘤质量的75%。重编程循环和肿瘤与髓样细胞相关,以激活其通过吞噬作用,细胞因子分泌和抗原表现来激活抗肿瘤适应性免疫的能力,是一种有吸引力的方法,可利用并策划系统性的抗肿瘤免疫。在体内专门靶向和激活髓样细胞仍然具有挑战性。为了克服这一障碍,我们开发了一种新型的体内髓样细胞工程平台:FC A受体(FC A R)融合蛋白。与其他嵌合抗原受体(CAR)不同,该构建体是通过将肿瘤识别SCFV与人体FC受体的α链融合而设计的(CD89)。这些受体的稳定表达和功能需要内源表达的FC受体伽马链(FCR G),这是一种对免疫细胞(主要是髓样细胞)表达有限的蛋白质。术中包裹着编码FC A R融合蛋白的mRNA的脂质纳米颗粒(LNP)导致LNP的摄取并在髓样细胞中摄取嵌合受体融合蛋白的表达。在肝细胞癌的免疫缺陷异种移植模型和三重阴性乳腺癌中,编码GPC3或Trop2靶向FC A R融合蛋白的LNP mRNA的递送导致抗肿瘤疗效,从而确保了这种方法来编程髓样细胞的能力。此外,在B16/10合成性黑色素瘤模型中,用黑色素瘤抗原GP75靶向FC A R融合蛋白的治疗与启动广泛的全身免疫反应的启动,其特征在于激活的CD8 + T细胞通过激活的CD8 + T细胞浸润TME,与肿瘤相关的tregs和Antigen comcipination in Antigen of Antigen of Antigen of Antigen of Antigen of Antigen of Antigen of Antigen of Antigen of Antigen of Antigen of Antigen。当在cynomolgus猴子中注入时,抗Trop2 LNP导致了抗Trop2 Car的细胞表面表达,并且与安全读数的显着调节无关。这些研究共同强调了FC A R融合蛋白直接在体内传递以编程髓样细胞以识别和杀死癌症的潜力。
合格的专家小组对已发表的文献进行了全面的综述和关于丁丙诺啡的未发表研究数据。此外,他们使用轶事信息和自己的个人经验,使用丁丙诺啡来完成对非人类灵长类动物的埃塞卡XR®目标动物安全和有效性的评估。所审查的文献包括在非人类灵长类动物以及其他哺乳动物物种中使用丁丙诺啡,包括短效和长效表述。合格的专家小组重点是在手术等程序之后,在非人类灵长类动物中使用丁丙诺啡进行疼痛管理。与丁丙诺啡的短作作用表述(持续4小时至8小时的单个注射),丁丙诺啡的持续或延长释放配方(较长的作用)是长期作用,最大程度地减少重复的克制和与目标动物中多次注射的压力以及对处理者的风险相关的压力。ethiqaXr®是丁丙诺啡的扩展释放公式。由于非人类灵长类动物物种的多样性,该小组推断了各种物种的信息,以支持其评估EthiqaXr®的有效性和目标动物安全性。因此,合格的专家小组建议,当给患者服用镇痛药时,对于研究人员和兽医来说,请仔细评估每个动物或实验组的疼痛。合格的专家小组确定,如果需要,可以在初始剂量后每72小时进行一次重复剂量的EthiqaXr®。合格的专家小组使用了可用的信息和个人经验来支持给药建议。他们说,非人类灵长类动物的剂量范围为0.01-0.72 mg/kg体重丁丙诺啡。合格的专家小组(Guarnieri,2021)审查的一篇文章报告说,哺乳动物物种通常需要0.5-2 ng/ml的丁丙诺啡血液浓度以提供可接受的镇痛。第二篇文章描述了与丁丙诺啡的持续释放(SR)配方相比,即时释放(IR)丁丙诺啡的药代动力学(PK)(Nunamaker等,2013)。成人恒河猴和cynomolgus猴子被施用0.01 mg/kg IR,0.03 mg/kg IR或0.2 mg/kg SR。猴子分别在4、8和96小时保持了高于0.5 ng/ml的丁丙诺啡的血浆浓度。合格的专家小组确定,这项研究表明,提供IR二马诺啡的镇痛需要重复
摘要 背景 CD47-SIRP α 通路是重要的髓细胞免疫检查点,靶向 CD47/SIRP α 轴代表了促进抗肿瘤免疫的一种有前途的策略。几种靶向 CD47 的药物在临床试验中表现出令人鼓舞的早期活性。然而,由于 CD47 普遍表达,抗原沉降和血液学毒性(如贫血和血小板减少症)是开发靶向 CD47 疗法的主要问题。考虑到 SIRP α 的表达有限,靶向 SIRP α 是阻断 CD47-SIRP α 通路的另一种方法,但可能导致不同的疗效和安全性。方法 通过杂交瘤融合和人源化产生靶向 SIRP α 的抗体 BR105。BR105 的特点是与人 SIRP α 等位基因结合并阻断与 CD47 的相互作用。通过使用人巨噬细胞在体外吞噬试验中确定功能活性。使用 OKT3 诱导的 T 细胞增殖试验和同种异体混合淋巴细胞反应研究了 BR105 对人 T 细胞活化的影响。使用人 SIRP α 人源化免疫缺陷小鼠作为癌症模型来评估 BR105 的体内抗肿瘤功效。在食蟹猴中通过重复给药毒性研究探讨了安全性,并进一步评估了毒代动力学分析。结果 BR105 显示出与各种 SIRP α 变体的广泛结合活性,并有效阻断 SIRP α 与 CD47 的相互作用。体外功能测定表明,BR105 与治疗性抗体协同作用,促进肿瘤细胞的吞噬作用。此外,BR105 和治疗性抗体的组合显著抑制了异种移植肿瘤模型中的肿瘤生长。尽管 BR105 可能与 SIRP γ 轻微结合,但与其他非选择性 SIRP α 靶向抗体和 CD47 靶向药物不同,它不会抑制 T 细胞活化。非人灵长类动物毒性研究表明,BR105 耐受性良好,未观察到与治疗相关的不良反应。结论 发现了新型的差异化 SIRP α 靶向抗体 BR105,并在体外和体内显示出良好的抗肿瘤功效。BR105 具有良好的安全性,对 T 细胞功能没有不良影响。这些数据支持 BR105 的进一步临床开发,尤其是作为治疗剂与肿瘤靶向抗体或针对其他免疫检查点的抗体联合使用时可增强疗效。
官方:1贝吉尼,中国北京; 2美国,美国塔拉哈西,佛罗里达州,美国摘要背景:IL-15是一种有前途的癌症免疫疗法的细胞因子,因为它优先促进了天然杀手(NK)和CD8 + T细胞扩张。然而,由于全身毒性和狭窄的治疗窗口,IL-15的临床使用仍然有限。为了克服这些局限性,BGB-R046是作为IL-15促毒物开发的,它在循环中仍然不活跃,可以通过利用肿瘤富集的蛋白酶在肿瘤部位进行特定激活。BGB-R046由IL-15Rα-SUSHI-IL-15组成,也称为IL-15超级飞机,蛋白酶可激活的接头和与FC融合的掩盖部分以延长半衰期。激活后,IL-15Rα-Sushi-IL-15具有天然IL-15效力,并且由于缺乏FC融合而可以快速清除。最小活跃的IL-15Rα-SUSHI-IL-15在循环中的积累可能导致系统性毒性低,并且治疗窗口增加。方法:在细胞测定和小鼠HH细胞异种移植模型中表征了活化的BGB-R046的效力。在IL-15和IL-15受体人源化小鼠中评估了MC38和B16F10合成模型中的抗肿瘤效率。在Cynomolgus(CYNO)猴子中评估了BGB-R046的药代动力学(PK)和安全性。结果:Pro-Drug(BGB-R046)表现出相对较低的IL-15活性,并在人类细胞系和外周血单核细胞(PBMC)中恢复了全IL-15活性。BGB-R046在肿瘤微环境中裂解,以释放活性IL-15Rα-SUSHI-IL-15在HH异种移植模型中具有剂量依赖性药物学的影响。BGB-R046或与PD-1抗体结合使用,在MC38和B16F10合成模型中显示依赖剂量的抗肿瘤效率。此外,BGB-r046在Cyno猴子中表现出了有利的PK PRE,其清除率和分布量类似于典型的单克隆抗体。猴子中BGB-R046的半衰期超过5天。在血浆中观察到最小的活性药物释放,活性药物/完整药物比低于0.2%。BGB-R046在Cyno猴子中耐受性良好。结论:BGB-R046是IL-15 Pro-Pro-proug,在小鼠模型中表现出显着的体外掩盖能力,显着的抗肿瘤效率,有利的PK和Cyno Monkeys的安全性。首次人类研究于2024年第3季开始,研究BGB-R046作为单一疗法,并与晚期肿瘤患者的Tislelizumab(抗PD-1治疗)结合使用。