引言乳腺癌(BC)是最常见的癌症,与全球女性最与癌症相关的死亡人数最多。bc发生在青春期后的所有年龄段的女性中。在2022年,有230万妇女被诊断出患有卑诗省的妇女,在全球范围内造成约670,000人死亡1。尽管在早期检测和治疗BC方面取得了进展,但转移,但显着使治疗复杂化,并且仍然是癌症相关死亡的主要原因2,3。转移是指癌细胞从原发性肿瘤部位扩散以在不同解剖部位建立的过程2。这些扩散的细胞很难治疗,快速生长,并且会导致在转移部位4的器官衰竭。因此,了解驱动BC转移的详细分子机制对于制定更有效的治疗干预措施至关重要。α-微管蛋白的乙酰化是一种与BC进展和转移3,5-7相关的机制。 这是一种翻译后修饰(PTM),通常发生在α-微管蛋白的赖氨酸40上,这是一种与β-微管蛋白二聚体的关键蛋白。 这些异二聚体是在5,8细胞中形成微管(MTS)聚合以形成微管(MTS)的构件。 PTM,例如乙酰化和驱虫率与癌症的细胞转化有关9。 例如,α-微管蛋白的乙酰化已被证明可以增强细胞的附着,迁移和重新分析,从而为转移势7提供选择性优势7。α-微管蛋白的乙酰化是一种与BC进展和转移3,5-7相关的机制。这是一种翻译后修饰(PTM),通常发生在α-微管蛋白的赖氨酸40上,这是一种与β-微管蛋白二聚体的关键蛋白。这些异二聚体是在5,8细胞中形成微管(MTS)聚合以形成微管(MTS)的构件。PTM,例如乙酰化和驱虫率与癌症的细胞转化有关9。例如,α-微管蛋白的乙酰化已被证明可以增强细胞的附着,迁移和重新分析,从而为转移势7提供选择性优势7。这些修饰通常与癌症的结果不良和增强的转移能力相关,这为将其定为潜在治疗剂的基本原理7,9。该新闻通讯将探讨α-微管蛋白乙酰化在BC转移中的作用,其生物学意义及其治疗潜力。
将大脑视为由简单神经元组成的复杂计算机无法解释意识或认知的基本特征。没有突触的单细胞生物利用其细胞骨架微管执行有目的的智能功能。需要一个新的范式来将大脑视为一个尺度不变的层次结构,既从神经元水平向上延伸到越来越大的神经元网络,也向下、向内延伸到神经元内细胞骨架微管中更深、更快的量子和经典过程。证据表明,微管中存在在太赫兹、千兆赫兹、兆赫兹、千赫兹和赫兹频率范围内重复的自相似传导共振模式。这些传导共振显然起源于太赫兹量子偶极振荡和每个微管蛋白(微管的组成亚基和大脑中最丰富的蛋白质)中色氨酸、苯丙氨酸和酪氨酸的芳香族氨基酸环的π电子共振云之间的光学相互作用。现在,来自培养的神经元网络的证据还表明,树突状体细胞微管中的千兆赫和兆赫振荡调节远端轴突分支的特定放电,从而因果地调节膜和突触活动。大脑应该被视为一个尺度不变的层次结构,其中量子和经典过程对意识和认知至关重要,这些过程源自神经元内的微管。
摘要 细胞骨架的完整性对于吞噬作用和细胞内运输等多种细胞过程至关重要。肌动蛋白细胞骨架的组织和动态破坏会导致与年龄相关的症状和疾病,从癌症到神经退化。此外,肌动蛋白细胞骨架完整性的变化不仅会破坏体细胞和干细胞的功能,还会破坏配子的功能,导致胚胎发育异常。因此,保持细胞骨架完整性和动态的策略可能对与年龄相关的疾病有治疗作用。本文的目的是重新审视目前对肌动蛋白细胞骨架在衰老中所起的作用的理解,并回顾基础研究向干预发展转变的机遇和挑战。希望通过掌握肌动蛋白动态随年龄变化的证据,为未来的研究提供关于抗衰老医学的见解。
摘要:人们越来越关注纳米力学作为各种病理的标志物的应用。原子力显微镜 (AFM) 是一种可用于量化活细胞纳米力学特性的技术,具有高空间分辨率。因此,AFM 提供了追踪活细胞中细胞骨架重组变化的可能性。两种主要细胞骨架成分(即肌动蛋白丝和微管)的结构、组织和功能受损会导致严重影响,从而导致细胞死亡。这就是为什么这些细胞骨架成分是抗肿瘤治疗的目标。本综述旨在描述有关 AFM 追踪抗肿瘤药物作用引起的活细胞纳米力学特性变化的能力的知识,这些变化可能转化为抗肿瘤药物的功效。
心血管疾病 (CVD) 的患病率正在迅速上升,预计到 2030 年,每年将有超过 2360 万人死于 CVD,到 2035 年,美国大约一半的成年人口将患有某种形式的 CVD。仅在美国,每年仅 CVD 的管理和治疗费用就超过 3500 亿美元,其中大部分支出用于缺血性心脏病和高血压健康服务。全球 CVD 负担日益加重,凸显了加强和持续全球预防工作以及大规模药物发现方法的必要性,这些方法可以充分满足临床未满足的需求。细胞骨架组,我们将其定义为完整的细胞骨架蛋白组,例如细丝和微管,以及其他相关材料,包括支持其结构的底层细胞外基质 (ECM),为 CVD 药物靶标发现提供了相对较新且尚未得到充分探索的途径。
黄油中的生动结构颜色是由光子纳米结构散射光引起的。结构颜色用于众多生物信号功能,并具有重要的技术应用。从光学上讲,这种结构是充分理解的,但是对它们在体内发展的洞察力仍然很少。我们表明,肌动蛋白与黄油翼鳞片中的结构颜色形成密切相关。使用成人和发展中H. sara的虹彩(结构上有色)和非冰箱尺度之间的比较,我们表明虹彩尺度具有更密集的肌动蛋白束,导致倾斜脊密度增加。超分辨率的微分析跨三个遥远相关的黄油种类揭示,肌动蛋白在尺度发育过程中反复重新安排,并且在形成光学纳米结构时至关重要。此外,在这些后期的发育阶段进行肌动蛋白扰动实验导致H. Sara的结构颜色几乎几乎总损失。总体而言,这表明肌动蛋白在黄油含量尺度的结构颜色形成过程中起着至关重要的直接模板作用,从而提供了在鳞翅目中可能具有普遍性的脊模式机制。
摘要:大麻素在认知和运动障碍的治疗方法中引起了人们的关注,这是神经系统疾病的特征。迄今为止,已经从大麻sativa中提取了100多种植物大麻含量,其中一些已显示出神经保护性能以及影响突触传播的能力。在这项研究中,我们研究了鲜为人知的植物大麻素,大麻诺(CBNR)对神经元生理学的影响。使用NSC-34运动神经元细胞系和下一代测序分析,我们发现CBNR影响与突触组织和专业化相关的CBNR突触基因,包括与细胞骨架和离子通道有关的基因。特别是钙,钠和钾通道亚基(Cacna1b,cacna1c,cacnb1,grin1,scn8a,kcnc1,kcnj9),以及与NMDAR相关的基因(AGAP3,Syngap1)和CABP1,CABP1,CABKP1,CABKVV)细胞骨架和细胞骨架相关基因(ACTN2,INA,TRIO,MARCKS,MARCKS,MARCKS,BSN,RTN4,DGKZ,HTT)。这些发现突出了CBNR在调节突触发生和突触传播中所起的重要作用,这表明需要进一步研究来评估CBNR在治疗许多神经疾病中表征运动障碍的突触功能障碍中的神经保护作用。
骨肉瘤细胞的去分化导致预后不良。我们计划识别与细胞去分化有关的关键分子,并探索它们如何促进骨肉瘤细胞的肺转移。我们进行了一个球体形成测定法,并确认可以将球体细胞重新分化为特定培养基中的成骨细胞,脂肪细胞和软骨细胞,并且在细胞表面检测到了细胞表面,这表明球体样细胞是透射细胞的。血小板传播1(THBS1)和ITGA被确定为去分化的关键分子,而THBS1表达较高的骨肉瘤患者的预后较高。thbs1在去分化的早期阶段促进了itga1和itga6在细胞膜上的积累,从而增加了细胞质中FAK,RASGRF1和MLC2的磷酸化,并促进细胞骨架重塑。我们的结果表明,THBS1通过促进细胞骨架重塑来促进细胞去分化和肺转移,并且ITGA1和ITGA6在介导细胞外向至细胞内信号中起着重要作用。这种介导作用主要发生在去分化的早期阶段。
Kari和她的团队还在研究细胞骨骼(称为细胞骨架)在调节线粒体动力学中的作用。细胞骨架有助于维持线粒体和其他细胞成分的形状和运动。“众所周知,线粒体动力学取决于哺乳动物和酵母中的细胞骨架,但对于D. discoideum中的细胞骨架在动力学中的作用并不了解,” Kari解释说。“为了确定这种作用,我们需要分析线粒体动力学过程中细胞骨架和线粒体之间的相互作用。”通过使用活细胞成像,研究人员可以观察细胞骨架如何实时与线粒体相互作用。这种方法使他们能够更好地理解这些相互作用中的破坏如何影响线粒体功能并导致细胞疾病。