本文已被接受以进行出版和进行完整的同行评审,但并非通过复制,排版,分页和校对过程,这可能会导致此版本与记录版本之间的差异。请引用本文为doi:10.1111/bph.15386
自 2019 年 12 月以来,严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 在全球急剧传播,导致大量发病率和死亡率。COVID-19 大流行给世界各地的公共卫生系统带来了巨大压力,给全球经济带来了灾难性后果。战胜 COVID-19 大流行需要大规模接种疫苗。私人财团和政府的高额资金支持使得 COVID-19 疫苗的研发变得极其迅速。为发展中国家生产和分发数十亿剂 COVID-19 疫苗是当局面临的艰巨挑战 [1]。迄今为止,美国食品药品监督管理局 (FDA) 已批准三种 COVID-19 疫苗用于紧急使用。其中两种是 mRNA 疫苗(辉瑞-BioNTech 和 Moderna)。这两种疫苗都是基于两剂方案获得批准的,尽管最近一些发达国家建议高危人群在接种不同持续时间的疫苗后接种第三剂加强剂。辉瑞-BioNTech 的初步研究表明该疫苗有效率达 95%,而 Moderna 宣布接种两剂后初始有效率达 94.5% [ 2 ]。杨森(强生)疫苗是第三个获得紧急使用授权的新冠疫苗。该疫苗为一剂疫苗,获准用于 18 岁及以上的人群 [ 3 ]。另一方面,自 2020 年 12 月 30 日起,牛津大学研发的 ChAdOx1 nCoV-19 疫苗 (AZD1222) [ 4 ] 在英国及随后的许多其他国家获得紧急使用授权,该疫苗采用两剂标准剂量接种方案,每剂间隔 4 – 12 周,适用于 18 岁及以上的成年人。一些发达国家还建议高危人群在接种杨森或 ChAdOc1 疫苗后,以不同的间隔接种一剂 mRNA 疫苗加强剂。由于供应严重短缺,大多数发展中国家无法提供加强剂。此外,由于 COVID-19 疫苗供应短缺,一些国家选择将第二剂 COVID-19 疫苗的接种时间推迟一段时间,目的是让大量人接种第一剂疫苗,然后再进行第二剂接种 [ 5 , 6 ]。该策略的优缺点在世界范围内引发了激烈的争论,专家们并未达成明确的共识 [ 7 , 8 ]。我们不偏袒任何一方,而是试图从纯数学的角度回答以下问题:我们应该推迟第二剂疫苗的接种吗?我们还回答了一个更普遍的问题,即如果采用 n 剂方案,如何在人群中最佳地分配任意数量的 n 剂。需要注意的是,我们的模型在比较不同的给药策略时没有考虑免疫学和流行病学效应(例如 [ 9 , 10 ])。我们的模型主要用于一般人群的疫苗接种策略和决策。
引言近年来,统计变异性 (SV) 对纳米 CMOS 电路时序的影响引起了广泛关注[1]–[8]。SV 使数字电路在关键路径延迟甚至功耗方面表现出非确定性性能,而不是确定性行为。SV 的主要来源包括随机掺杂波动 (RDF)、线边缘粗糙度 (LER) 和金属颗粒粒度 (MGG) [9]–[11]。这些来源影响器件电气性能指标,如阈值电压 (V th)、关态电流和亚阈值斜率 (SS),进而对电路行为产生重大影响。特别是,文献 [12]–[20] 广泛研究了工艺和随机变异性对传播延迟时间的影响。在一项开创性的工作中,作者提出了一个半解析模型来预测由 V th 变化引起的逻辑电路延迟分布 [12]。不同技术节点下由 RDF 引起的传播延迟变化是综合的
航空业在全球运输中起着至关重要的作用,促进经济增长和革命性旅行。但是,航班延误已经成为一个日益严重的关注点,影响了航空公司和乘客。本研究旨在研究用于飞行延迟预测的幼稚贝叶斯算法。目的是使用幼稚的贝叶斯算法开发可靠的飞行延迟预测模型并评估其性能。使用美国运输部(DOT)的飞行延迟和取消数据的数据集用于预测。本研究修改了高斯幼稚贝叶斯的参数调整,以识别专门为该飞行延迟数据集构建模型的最佳值。参数调整高斯幼稚的贝叶斯模型的性能与另外两种众所周知的算法是K-Neartiment Neighbors(KNN)和支持向量机(SVM)。还对KNN和SVM算法进行了培训和测试,以完成航班延迟的二元分类,以实现基准测试。通过比较准确性,特异性和ROC AUC分数的值来实现算法的评估。比较分析表明,高斯幼稚的贝叶斯的表现最佳,精度为93%,而KNN的性能最差,而ROC AUC得分为63%。
摘要 - 环振荡器是集成电路的必要块,充当数字时钟生成器。该振荡器有几种进度技术。然而,最适当的环振荡器的拓扑选择需要对电气特征进行权衡的分析。本文介绍了两个拓扑之间的比较研究,以实施环振荡器。每个拓扑都使用特定的延迟单元格:CMOS逆变器或差分对放大器。目标输出频率为10.44 MHz,振荡器以130 nm的技术实现。拓扑是根据功率耗散,硅面积和制造过程变化的比较。电气模拟表明,逆变器环振荡器具有较小的功耗和较小的硅面积。在另一侧,差分放大器振荡器对过程变化的敏感性较小。这些结果可以帮助指导设计师确定适合集成电路设计中系统要求的最佳拓扑。索引项 - 逆变器,差分对,环振荡器,人体动作过程变化。
。cc-by 4.0国际许可证是根据作者/资助者提供的,他已授予MedRxiv的许可证,以永久显示预印本。(未通过同行评审认证)
案例演示:患者1(一个13岁的女孩)通常在学期出生。抗磷脂综合征使她的妊娠复杂化,持续的呕吐是通过多种药物进行的,包括吡ido醇(每天40毫克)。出生后6小时发生癫痫发作,对毒药没有反应。但是,两天后,当吡ridoxine(每天40毫克)施用时,它们停止了。她继续服药,并推迟了早期里程碑。在18个月时停用苯巴酮,在8岁时增加吡啶多醇每天增加到100毫克。她能够加入普通学校并表现良好。患者2(一个12岁的男孩)在学期正常分娩。出生后10小时开始癫痫发作,他立即获得了40毫克的吡啶多毒素。癫痫发作就受到了控制,他经历了延迟的里程碑。7岁时,每天增加到每天100毫克。他目前不在五年级,患有阅读障碍。整个外显子组测序(WES)表明,患者1和2均具有ALDH7A1(NM_001202404:外显子12:C.1168G> C;(P.Gly390arg))中新型的纯合错义变体)。
aq:1 =请确认或为本文研究添加任何资金或财务支持的详细信息。aq:2 =请为您的资助代理提供首字母缩写的扩展。提供正确的确认将确保对资助者有适当的信誉。aq:3 =如果您还没有这样做,请确保您已为论文提交了图形摘要。GA应该是您所接受的文章中的当前图像或图像。GA将显示在您的文章摘要页面上的IEEE Xplore上。请从纸张中选择当前的图,并尽早提供标题,以便为图形摘要提供标题。请注意,字幕不能超过1800个字符(包括空格)。如果您提交了视频作为图形摘要,请确保有一个覆盖图像和标题。覆盖图像通常是最能代表视频的视频的屏幕截图。这是针对可能无法访问视频观看软件的读者。请参阅下面的链接中的一个示例:http://ieeeeacess.ieee.org/submitting-an-article/ aq:4 =请提供参考日期。[18]。aq:5 =请提供第并发行编号。或一个月参考。[38]。aq:6 =请为作者Glauco Fontgalland和Fayu Wan提供更好/更高质量的图像。aq:7 =当作者Mathieu Guerin获得博士学位时,请提供完成年份。程度。
- 在英国,Covid-19的比率正在迅速上升。最新数据表明,6月9日,英国有7,540例确认的案件。这比5月24日(平均7天滚动)的2,912相比,在过去两周中增加了159%。- 在英格兰西北部,COVID-19的速度最快。6月9日,西北有2,112例确认的案件。这比5月24日(7天滚动平均值)的772相比,在过去两周中增加了174%。- 现在很明显,英国已经进入了病毒病例的指数增长阶段。但是,这些数据仅给出了早期的迹象表明限制对17的影响可能会加上更可传播的三角洲变体的扩散。- 评估全部影响需要更多时间,包括新病例转化为严重疾病和医院护理需求的程度。对住院的影响至少需要2周才能显而易见,而死亡的任何增加都将花费更长的时间 - 长达4周。- 现在英国的Covid-19的比率也高于琥珀色名单上的许多县。例如,德国于6月9日报告了3,275例新案件,而法国报告了5,557例新案件。如果政府认为在这些国家和英国之间不受限制地旅行是不安全的,那么很明显,国内措施也必须保留,并且计划放松6月21日的所有法律限制。- 过早放松所有限制的风险撤销了疫苗计划的辛勤工作,并导致了3次的感染和住院浪潮,这对英国与长期疾病的长期疾病和残疾率的含义有影响。
Blaise Ravelo 1,IEEE 会员,Mathieu Guerin 2,IEEE 会员,Jaroslav Frnda 3,4,IEEE 高级会员,Frank Elliot Sahoa 5,Glauco Fontgalland 6,IEEE 高级会员,Hugerles S. Silva 7,8,IEEE 会员,Samuel Ngoho 9,Fayrouz Haddad 2,IEEE 会员,以及 Wenceslas Rahajandraibe 2,IEEE 会员 1 南京信息工程大学(NUIST),电子信息工程学院,江苏南京 210044 2 艾克斯-马赛大学,CNRS,土伦大学,IM2NP UMR7334,13007 马赛,法国 3 日利纳大学交通运输与通信运营与经济学院定量方法与经济信息学系, 01026 Zilina, 斯洛伐克 4 电信系,电气工程和计算机科学学院,VSB 俄斯特拉发技术大学,70800 俄斯特拉发,捷克共和国 5 Laboratoire de Physique Nucléaire et Physique de l'Environnement (LPNPE), Université d'Antananarivo, Antananarivo 101, Madagascar 6 联邦大学Campina Grande,应用电磁和微波实验室,Campina Grande/PB,58429,巴西 7 Instituto de Telecomunicações and Departamento de Eletrónica,Telecomunicações e Informática,Universidade de Aveiro,Campus Universitário de Santiago,3810-193 Aveiro,葡萄牙 8 巴西利亚大学电气工程系(UnB),联邦区70910-900,巴西 9 法国系统科学协会 (AFSCET),巴黎 75013,法国