动态治疗方案(DTRS)提供了一种系统的方法来制定适合个人患者特征的顺序治疗决策,尤其是在感兴趣的生存结果的临床环境中。审查感知树的增强学习(CA-TRL)是一个新的框架,可在估计最佳DTR时解决与审查数据相关的复杂性。我们探索从观察数据中学习有效DTR的方法。通过增强基于树木的增强学习方法,具有增强的反可能性加权(AIPW)和审查感知的修改,CA-TRL提供了强大而可解释的治疗策略。我们使用SANAD癫痫数据集通过广泛的模拟和现实世界应用来展示其有效性,在该数据集中,它的表现优于最近提出的关键指标中提出的ASCL方法,例如受限的平均生存时间(RMST)和决策精度。这项工作代表着跨不同医疗机构的个性化和数据驱动的治疗策略迈出的一步。
上下文。准确的模拟晕圈目录是用于开发和验证宇宙学推断管道的必不可少的数据产品。生成模拟目录的一个主要挑战是对光环或星系偏置进行建模,这是从物质密度到暗物质光环或可观察的星系的映射。为此,n个体代码生成了最先进的目录。然而,为大容量的大量N体模拟产生了大量的N体模拟,尤其是在包括磁水动力学的情况下,需要大量的计算时间。目标。我们介绍和基准测试了一个可区分和物理信息的神经网络,该网络可以生成与从完整的N体代码获得的模拟光环目录相当的质量。模型设计在训练程序和大型模拟目录套房的生产上具有计算有效的效率。方法。我们提出了一个神经网络,仅依靠18至34个可训练的参数,该参数可从暗物质过度密度场中产生光环目录。通过将首先原理动机的对称性纳入我们的模型体系结构来实现网络权重的减少。我们使用不同分辨率,红移和大型垃圾箱的仅黑色n体模拟训练了我们的模型。我们使用不同的n点相关函数将最终模拟目录与N体晕目录进行了比较,从而验证了最终模拟目录。结果。此外,我们发现该网络可以在近似密度字段上进行培训,以进一步降低计算成本。我们的模型生成了与参考模拟一致的模拟光环目录,这表明该新型网络是生成模拟数据的一种有希望的方法,该数据由于其计算效率而即将进行的宽场调查。我们还介绍了如何解释训练有素的网络参数,以洞悉结构形成的物理。最后,我们讨论了我们的模型的当前局限性,以及从这项研究中可以明显看出的近似Halo模拟产生的一般要求和陷阱。
