能动性被定义为通过单一循环演化可以提取的最大功量。它在评估量子系统的工作能力方面起着至关重要的作用。最近,量子相干性在工作提取中的重要性已在理论上得到确认,表明相干性更高的量子态比失相态量子态具有更高的能动性。然而,相干能动性的实验研究仍然缺失。在这里,我们报告了对单自旋系统中相干能动性的实验研究。基于使用辅助量子比特测量能动性的方法,成功提取了非平衡态能动性的相干和非相干分量。通过改变状态的相干性,观察到了系统相干性增加引起的能动性的增加。我们的工作揭示了量子热力学和量子信息论之间的相互作用,未来的研究可以进一步探索其他量子属性在热力学协议中的作用。
显然,描述量子系统中的信息更加微妙,因此,量子信息的热力学也需要进行更彻底的分析[11,12]。这一研究领域的意识到,量子热力学对新一代量子技术的发展产生了深远的影响[13,14]。在这些新兴技术中,特别是量子热机[15-20]和量子信息发动机[21 - 25],又名量子计算机[26]需要全面研究量子信息作为热力学资源。在这种情况下,重要的是要认识到,从von Neumann熵量化的热力学普及量信息中,这并不是要考虑的信息的唯一概念。相反,了解边际编码的信息的分配[27-29],尤其是真正的量子相关性的热力学价值[30 - 32]是有用的。
根据其定义,形容词的成真是指神经系统的生理机械性,以支持生物体消耗能量的能力[1]。将此概念置于物理系统上,然后创造了量子成分,以表示可以通过等激素转化提取的最大工作量[2]。尤其是,量子麦内氏疗法量化了存储在活性量子状态中的能量量,并且可以通过使状态被动提取[3-6]。简单地说,一个被动状态在能量基础上是对角线,其本征态被以其特征值的下降幅度排序。gibbs状态被称为完全被动[3]。量子成分在量子热力学中起着重要作用[7]。尤其是在评估真正量子特性的热力学值[8-11]时,例如挤压和非平衡储层[12,13],相干性[14,15]或量子相关性[16,17],它已证明是强大的。但是,如果量子系统与热储层没有接触,则计算量子的麦角镜远非微不足道。这是由于以下事实:麦芽糖是由所有可以在系统上起作用的单位的最大值决定的[2]。请注意,并非所有被动状态都可以通过单一行动,包括完全被动状态来达到。在分析的第二部分中,我们转向一个统一的框架,即几何量子力学。利用这种方法[20-22],我们定义了几何相对熵。在本文中,鉴于量子的插入可以写成量子和经典的相对熵的差异(特征值分布的kullback -leibler差异),我们定义了经典的成真,从而量化了量子的最大作用,从而逐渐表现出了量子,从而量化了量子的量子,从而可以逐步提取出拟南象中的量子。连贯[18,19]。这样,表征一次性量子工作的方法变得特别透明[23 - 27]。在此范式中,工作是通过第一个测量系统能量而确定的,然后让其在时间依赖性
令人吃惊的是,可以从量子系统中获得的能量并不由系统的能量决定。这一违反直觉事实的物理来源是,开尔文和普朗克提出的热力学第二定律禁止从热平衡态循环提取功 [4]。因此,热状态通常被称为被动 [5]。因此,在循环(幺正)过程中可以提取的最大功由其平均能量的“非被动”部分决定。这个量定义为状态平均能量与相应被动状态之间的差,被命名为 ergotropy(来自“ergo”表示功和“trope”表示变换),类似于熵这个词 [6]。在没有相干性的系统中,非相干性 ergotropy 仅取决于能级的布居分布。然而,在能级之间存在相干性的情况下,出现了一种新的非经典贡献,即相干性 ergotropy [7]。值得注意的是,它是非负的,表明一致性可以增强系统的工作生产能力。
在典型的量子信息引擎中具有量子优势的发动机,工作物质由离散的,量子键入的电子状态制成。在描述其运作方式时,在过去的10年内从理论上成熟了量子热纳米的领域,强调了这种工作物质与外界之间的量子相互作用的优势。几个概念可以构成这种引擎中的量子资产。例如,该工作物质的激发量子状态可以在返回基态后提供量子来源3的附加工作来源3。这是所谓的麦芽糖4的一个例子。此外,制造了工作物质,以选择性地与发动机的冷水浴室相互作用。这些相互作用是连贯的,并且是按电子/能量定制的,可以等同于量子信息测量/工作物质的设置,这也会产生麦角属5。一般而言,麦内型允许量子发动机的表现优于其经典的3-7。在过去的3年中,已经报道了发动机中这种量子优势的一些实验证明3,6 - 8。到目前为止,实现了设置和测量原子上电子水平的量子状态的发动机周期(例如,具有未配对电子旋转3,6的氮空位中心钻石几乎完全是光学实验的领域。通常使用可见光和微波激发进行发动机笔触,并使用发光进行发动机状态读数。通过通过明确的外部输入来制定每一次中风,科学家可以研究这些引擎的内部工作和量子资产的作用。但是,由于操作发动机所需的大量辅助设备,这种基本方法排除了任何实际应用。
量子电池(QB)是符合量子力学原理的能源存储和提取装置。在这项研究中,我们考虑了在没有Dzyaloshinskii-Moriya(DM)相互作用的情况下,海森堡自旋链模型的QB的特征。我们的结果表明,DM相互作用可以增强QB的麦内型和功率,这表明集体充电可以优于QB性能的平行充电。此外,事实证明,一阶连贯性是充电过程中至关重要的量子资源,而细胞之间的量子转向不利于QB的能量存储。我们的调查提供了具有DM相互作用的海森堡自旋链模型对QB的特性的洞察力,并便利了我们在逼真的量子电池框架中获得性能。
量子电池实践开发过程中的两个主要挑战(QB)是:如何实现快速稳定的充电,即通过麦角型量化的最大可提取工作,以及如何识别许多身体量子系统中快速稳定充电和提出相反控制策略的反向机制。这项工作提出了与周围环境相互作用的强耦合多体集体充电方案,分析其物理操作机制作为电池系统,探索了在强烈的环境耦合下实现快速和稳定的集体充电的机制,并对抑制反向机制的各种物理方法进行了详细的分析。这项工作强调了多体QB系统的新型特性,并提高了加速QB的实际应用所需的物理研究。
提出了一种基于机械振荡器驱动的离子链的可实现和可控平台中实现量子电池的方案。研究了两级离子之间跳跃相互作用的影响以及离子与外部机械振荡器之间的偶联相互作用在电池充电过程中的影响。通常会忽略系统中的反向旋转波术语的重要性,并被分析,发现电池的充电能量和电池的麦角镜受到反向旋转波项的极大影响。由于量子相干性的破坏,两级系统的量子相变受反向旋转波项的约束。最后,讨论了充电过程对离子之间距离的幂律依赖性。我们的理论分析为开发实用的量子电池提供了坚实的基础。
经典发动机将热量从热源转移到冷源,方法是使用工作物质 (WS) 将热量依次与每个热源接触。这种热的上游流动在热力学上增加了发动机的熵。在此过程中,自然会限制发动机的最大效率,该效率不能超过由两个热源的温度比决定的理想值。卡诺于 1824 年证明了这一极限,体现了热力学第二定律。量子发动机可以通过重新调整其基本概念来超越这一限制。理论 [1–4] 和实验 [3,5–7] 都表明,可以从量子系统中获取额外的工作能力,称为“能效”。理论上,这些发动机的运行可以分为“冲程”,以模仿自然界的最小作用原理。[3] 冲程的作用以其持续时间和速率为特征
最近,人们对量子热力学设备(尤其是量子击球设备)引起了人们的关注。量子电池用作由量子热力学规则支配的能源存储设备。在这里,我们提出了一个量子电池模型,其中可以将关注系统设想为电池,并且环境环境充当充电器(耗散)机制,沿着无处不在的量子棕色运动模型。我们采用量词及其(IN)的(IN)合并表现以及瞬时和平均功率来表征量子电池的性能。我们通过动量和位置坐标在放电和充电动力学上调查了浴室温度以及系统与环境的耦合的影响。此外,我们探测了系统动力学的内存e ff ects,并在系统的非马克维亚进化与电池的充电过程之间获得关系。