脊髓刺激(SCS)是一种现有的临床神经技术,用于通过沿着硬膜外空间中线植入的电极刺激脊髓的背侧柱来治疗慢性疼痛[10]。最近,我们证明,通过植入SC在腰椎硬膜外空间侧面引导,我们可以在降低截肢截肢的人缺失的肢体中引起感觉[9]。SC在脊髓的横向上传递的 SC会激发从本体受体(即原发性和次级肌肉纺锤体和高尔基肌腱传统)和机械感受器(即Aβ皮肤传入)的轴突[11]。 通过刺激这些传入的纤维,SCS参与脊柱反射途径,引起肌肉反应,称为后根肌肉(PRM)反射,可以使用肌电图(EMG)记录[12-14]。 PRM反射是由本体感受性和皮肤传入纤维的多段激活引起的复合反射反应,这些传入纤维在脊柱运动神经元和中间神经元上突触[13,15,16]。SC会激发从本体受体(即原发性和次级肌肉纺锤体和高尔基肌腱传统)和机械感受器(即Aβ皮肤传入)的轴突[11]。通过刺激这些传入的纤维,SCS参与脊柱反射途径,引起肌肉反应,称为后根肌肉(PRM)反射,可以使用肌电图(EMG)记录[12-14]。PRM反射是由本体感受性和皮肤传入纤维的多段激活引起的复合反射反应,这些传入纤维在脊柱运动神经元和中间神经元上突触[13,15,16]。
通过植入皮层或皮层下结构与大脑交互的设备对于感觉或运动功能障碍患者的恢复和康复具有巨大潜力。典型的植入手术是根据完整功能生成的大脑活动图来规划的。然而,由于目标人群的残留功能异常,以及越来越多的植入硬件与 MRI 不兼容,因此绘制大脑活动图以规划植入手术具有挑战性。在这里,我们介绍了在瘫痪患者和现有脑机接口 (BCI) 设备中绘制受损体感和运动功能的方法和结果。脑磁图 (MEG) 用于直接绘制经皮电刺激和受损手部尝试运动期间引起的神经活动。发现诱发场与预期的解剖学和躯体组织相符。这种方法可能对引导植入物在其他应用中很有价值,例如用于疼痛的皮层刺激以及改善植入物定位以帮助减小开颅尺寸。
尽管有希望取得的进步,但耐药性癫痫(DRE)的闭环神经刺激仍然依赖手动调整并产生可变的结果,而自动化的可预测算法仍然是一种吸引力。作为解决这一差距的基本步骤,在这里,我们研究了在参数丰富的神经刺激下人类颅内EEG(IEEG)反应的预测动力学模型。使用来自n = 13例DRE患者的数据,我们发现具有约300毫秒因果历史依赖性的刺激触发的切换线性模型可以最好地解释引起的IEEG动力学。这些模型在不同的刺激幅度和频率中高度一致,从而可以从丰富的刺激下学习可推广的模型,并且对数据有限。此外,几乎所有受试者的IEEG都表现出距离依赖的模式,从而刺激直接影响致动位点和附近地区(≲20mm),会影响中距离区域(20〜100mm)通过网络相互作用,几乎无法达到远端区域(≳100mm)。峰网络相互作用发生在距刺激位点60毫米的60毫米处。由于其预测精度和机械性解释性,这些模型对于基于模型的癫痫发作和闭环神经刺激设计具有巨大的潜力。
背景和目标:最近,提出了一种基于稳态视觉诱发电位(SSVEP-BCI)的很有前途的脑机接口,它由两个刺激组成,这两个刺激一起呈现在受试者的视野中心,但在不同的深度平面(景深设置)。因此,用户可以通过转移眼球焦点轻松地选择其中一个。然而,在这项工作中,EEG 信号是通过放置在枕骨和顶骨区域(头发覆盖的区域)的电极收集的,这需要较长的准备时间。此外,该工作使用了低频刺激,这会产生视觉疲劳并增加光敏性癫痫发作的风险。为了提高实用性和视觉舒适度,本研究提出了一种基于景深的 BCI,使用从发际线以下区域(耳后)测量的高频 SSVEP 响应。
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2021 年 2 月 8 日发布。;https://doi.org/10.1101/2021.02.05.429877 doi:bioRxiv 预印本
1霍夫斯特拉/诺斯韦尔的神经外科系和芭芭拉·扎克医学院,纽约汉普斯特德,北汉普斯特德,11549,2费恩斯坦医学研究所,纽约,纽约,曼海斯特,11030,3 3号基础神经科学系,医学中心,医学院,医学中心,1211 Genurand,switfa neeva,switfa neeva,4.布朗克斯,纽约10467,5神经科学系,阿尔伯特·爱因斯坦医学院,布朗克斯,纽约,10461,6神经科学学院,艾克斯尔大学,阿克西尔大学,梅赛,13005年,马赛,法国,法国7号,克里姆利西范围的脑,脑,脑,脑,脑,脑海中心,哥伦比亚群岛。中心,伊兰大学,拉马特·甘5290002,以色列9号电气工程系,哥伦比亚大学,纽约,纽约,纽约10027,10 Neurosurgery系,贝勒医学院,德克萨斯州休斯敦市贝勒医学院,德克萨斯州77030,11 Nathan S. Kline Institute,New York 10962,纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市,纽约市。
背景和目标:最近,提出了一种基于稳态视觉诱发电位(SSVEP-BCI)的很有前途的脑机接口,它由两个刺激组成,这两个刺激一起呈现在受试者的视野中心,但在不同的深度平面(景深设置)。因此,用户可以通过转移眼球焦点轻松地选择其中一个。然而,在这项工作中,EEG 信号是通过放置在枕骨和顶骨区域(头发覆盖的区域)的电极收集的,这需要较长的准备时间。此外,该工作使用了低频刺激,这会产生视觉疲劳并增加光敏性癫痫发作的风险。为了提高实用性和视觉舒适度,本研究提出了一种基于景深的 BCI,使用从发际线以下区域(耳后)测量的高频 SSVEP 响应。
掠夺性狩猎在动物生存中起着至关重要的作用。与运动相关的振动体感信号传导对于小鼠的猎物检测和狩猎至关重要。然而,关于转化振动体感知提示以触发掠食性狩猎的神经回路知之甚少。在这里,我们报告了雄性小鼠振动区域的机械力是掠夺性狩猎的关键刺激。机械诱发的掠食性狩猎是通过脊柱三叉神经核(SP5I)中胆囊基蛋白阳性(CCK +)神经元的化学灭活消除的。CCK + SP5I神经元对机械刺激的强度做出了反应,并将神经信号发送到了与刻板印象捕食狩猎运动作用相关的上丘。突触失活了CCK + SP5I神经元到上丘的投影,机械诱发的掠夺性攻击受损。一起,这些数据揭示了脊柱三叉神经回路,该回路特定于翻译振动的体感提示来引发掠夺性狩猎。
摘要:脑电图 (EEG) 传感器技术和信号处理算法的最新进展为脑机接口 (BCI) 在从康复系统到智能消费技术等多种实际应用中的进一步发展铺平了道路。当谈到 BCI 的信号处理 (SP) 时,人们对稳态运动视觉诱发电位 (SSmVEP) 的兴趣激增,其中运动刺激用于解决与传统光闪烁/闪烁相关的关键问题。然而,这些好处是以准确性较低和信息传输速率 (ITR) 较低的代价为代价的。在这方面,本文重点介绍一种新型 SSmVEP 范式的设计,而不使用试验时间、阶段和/或目标数量等资源来增强 ITR。所提出的设计基于直观的想法,即同时在单个 SSmVEP 目标刺激中集成多个运动。为了引出 SSmVEP,我们设计了一种新颖的双频聚合调制范式,称为双频聚合稳态运动视觉诱发电位 (DF-SSmVEP),通过在单个目标中同时整合“径向缩放”和“旋转”运动而不增加试验长度。与传统的 SSmVEP 相比,所提出的 DF-SSmVEP 框架由两种运动模式组成,这两种运动模式同时集成并显示,每种模式都由特定的目标频率调制。本文还开发了一种特定的无监督分类模型,称为双折典型相关分析 (BCCA),该模型基于每个目标的两个运动频率。相应的协方差系数被用作额外特征来提高分类准确性。基于真实 EEG 数据集对所提出的 DF-SSmVEP 进行了评估,结果证实了其优越性。所提出的 DF-SSmVEP 表现优于其他同类方法,平均 ITR 为 30.7 ± 1.97,平均准确度为 92.5 ± 2.04,而径向缩放和旋转的平均 ITR 分别为 18.35 ± 1 和 20.52 ± 2.5,平均准确度分别为 68.12 ± 3.5 和 77.5 ± 3.5。
功能性脑网络和疼痛感知会随时间波动。然而,功能性脑网络的时间依赖性重构如何导致慢性疼痛在很大程度上仍未得到解释。本文,我们探讨了 28 名类风湿性关节炎 (RA) 患者与 22 名健康对照者 (HC) 相比,在疼痛期间,患病区域 (关节) 与中性部位 (拇指) 的脑网络整合和分离随时间的变化。在功能性磁共振成像期间,所有受试者均接受单独校准的疼痛压力,对应于关节和拇指处 50 毫米的视觉模拟标尺。我们实施了一种新方法来跟踪基于任务的网络连接随时间的变化。在此框架内,我们量化了整合 (参与系数,PC) 和分离 (模块内程度 z 分数) 的度量。通过在单个节点(大脑区域)和社区(节点簇)层面的多个空间尺度上使用这些网络测量值,我们发现,在发炎关节和 HC 中相应部位受到疼痛压力期间和之后,RA 患者的社区水平 PC 通常高于 HC。这表明,在对与疾病相关的身体部位进行疼痛刺激后的时间点,RA 患者的所有大脑社区整合程度都高于 HC。然而,患者中观察到的社区相关整合度升高似乎不仅与发炎关节的疼痛刺激有关,也与中性拇指有关,因为社区水平的整合和分离在患者的身体部位之间没有差异。此外,没有