大规模机器学习的最新进展已产生了能够适应一系列下游任务的高容量的“基础模型”。这种模型对机器人技术抱有很大的希望,但普遍的范式仍然将机器人描绘成单个自主决策者,并执行诸如操纵和导航之类的任务,并且人类参与度有限。然而,包括可穿戴机器人技术(例如,假肢,矫形器,外骨骼),近视和神经界面在内的大量实际机器人系统是半自治的,需要与人类合作伙伴进行持续的互动协调。在该立场论文中,我们认为机器人基础模型必须演变为交互式的多机构观点,以处理实时人类机器人共同适应的复杂性。We propose a generaliz- able, neuroscience-inspired architecture encompassing four modules: (1) a multimodal sensing module informed by sensorimotor integration principles, (2) an ad-hoc teamwork model reminiscent of joint-action frameworks in cognitive science, (3) a predictive world belief model grounded in internal model theories of motor control, and (4) a memory/feedback mechanism that呼应了基于Hebbian和基于增强的可塑性的概念。尽管通过机器人系统的镜头进行了说明,但可穿戴设备和人类生理学的镜头与众不同,但所提出的框架广泛适用于在半自治或交互式环境中运行的机器人。通过超越单一代理设计,我们的立场强调了机器人技术中的基础模型如何实现更强大,个性化和预期的性能水平。
方法:这是一项人工智能的前瞻性推理测试,针对 2011 年至 2019 年期间澳大利亚悉尼一家医院的癫痫患者的近 14,590 小时成人脑电图数据。推理集包括不同类型和频率癫痫发作的患者,年龄和脑电图记录时间跨度很大。人工智能 (AI) 是一个卷积长短期记忆网络,基于美国数据集进行训练。澳大利亚的数据集大约是美国训练数据集的 16 倍,发作间隔期(癫痫发作之间)很长,比训练集更加逼真,使我们的假阳性结果高度可靠。我们在人工智能辅助模式下,由人类专家裁判和由专家神经病学专家和脑电图专家组成的结果审查小组验证了我们的推理模型,共进行了 66 次,以证明在时间缩短一个数量级的情况下实现了相同的性能。
为了在现实世界中部署强化学习(RL)代理,它们必须能够推广到看不见的环境。但是,RL在分布外的概括方面挣扎,通常是由于过度拟合培训环境的细节。尽管可以应用监督学习的正则化技术来避免过度插入,但超级学习和RL之间的差异限制了其应用。为了解决这个问题,我们提出了RL的信噪比调节的参数不确定性网络(SNR PUN)。我们将SNR作为正规化网络的参数定向的新量度,并提供了正式分析,解释了SNR正则为什么对RL效果很好。我们证明了我们提出的方法在几个模拟环境中概括的有效性;在一个物理系统中,显示了使用SNR PUN将RL应用于现实世界应用程序的可能性。
学习通才体现的代理,能够解决不同领域中的多种任务是一个长期存在的问题。强化学习(RL)很难扩大规模,因为它需要为每个任务进行复杂的奖励设计。相比之下,语言可以以更自然的方式指定任务。当前的基础视觉模型(VLMS)通常需要进行微调或其他适应性,这是由于显着的域间隙在实施情况下被采用的。但是,此类域中缺乏多模式数据代表了开发用于具体应用的基础模型的障碍。在这项工作中,我们通过介绍多模式基础世界模型来克服这些问题,能够将基础VLM的表示和对齐为RL的潜在生成世界模型的潜在空间,而无需任何语言注释。最终的代理学习框架GenRL允许人们通过视觉和/或语言提示指定任务,将其扎根在体现的域的动态中,并学习想象中的相应行为。通过机车和操纵域中的大规模多任务基准测试评估,GenRL可以通过语言和视觉提示来实现多任务概括。此外,通过引入无数据的政策学习策略,我们的方法为使用生成世界模型的基础政策学习奠定了基础。
摘要:了解机器人必须在给定开放式任务中的非结构化环境中操纵对象。但是,现有的视觉负担预测方法通常仅在一组预定义的任务上手动注释的数据或条件。我们介绍了无监督的负担蒸馏(UAD),这是一种将负担知识从基础模型提炼到任务条件的辅助模型的方法,而无需任何手动注释。通过利用大型视觉模型和视觉模型的互补优势,UAD自动注释了一个具有详细的<指令,Visual Profiseance> Pairs的大规模数据集。仅在冷冻功能上训练一个轻巧的任务条件解码器,尽管仅在模拟中接受了对渲染的对象的培训,但UAD对野外机器人场景和各种人类活动表现出显着的概括。UAD提供的可负担性作为观察空间,我们展示了一项模仿学习政策,该政策证明了有希望的概括,可以看到对象实例,对象类别,甚至在培训大约10次演示后进行任务指令的变化。项目网站:https://gpt-affordance.github.io/。
摘要 — 由于脑电图 (EEG) 的受试者间/受试者内变异性,脑机接口 (BCI) 在实践中难以使用。通常,BCI 系统需要一种校准技术来获取受试者/会话特定数据,以便在每次使用系统时调整模型。这个问题被认为是 BCI 的一个主要障碍,最近出现了一种基于领域泛化的新策略来解决它。鉴于此,我们专注于开发一个 EEG 分类框架,该框架可以直接应用于来自未知域(即受试者)的数据,仅使用先前从不同受试者获得的数据。为此,在本文中,我们提出了一个框架,该框架采用开放集识别技术作为辅助任务,从源数据集中学习特定于主题的风格特征,同时帮助共享特征提取器将看不见的目标数据集的特征映射为新的看不见的域。我们的目标是在同一域中施加跨实例样式不变性,并降低潜在未见主体的开放空间风险,以提高共享特征提取器的泛化能力。我们的实验表明,使用域信息作为辅助网络可以提高泛化性能。临床相关性——本研究提出了一种提高独立于主体的 BCI 系统性能的策略。我们的框架可以帮助减少进一步校准的需要,并可用于一系列心理状态监测任务(例如神经反馈、癫痫发作的识别和睡眠障碍)。
量子分类和假设检验(状态和通道区分)是两个紧密相关的主题,主要区别在于前者是数据驱动的:如何将量子态 ρ(x) 分配给相应的类 c(或假设)是从训练期间的示例中学习的,其中 x 可以是可调的实验参数,也可以是“嵌入”到量子态中的经典数据。该模型是否具有泛化能力?这是任何数据驱动策略中的主要问题,即即使对于以前从未见过的状态,也能预测正确的类别的能力。在这里,我们通过证明量子分类器的准确性和泛化能力取决于量子态空间 Q 与经典参数空间 X 或类空间 C 之间的(Rényi)互信息 I(C:Q) 和 I2(X:Q),建立了量子分类与量子信息论之间的联系。基于上述特征,我们展示了 Q 的不同属性如何影响分类准确性和泛化,例如希尔伯特空间的维数、噪声量以及通过池化层等方式从 X 中忽略的信息量。此外,我们引入了信息瓶颈原理的量子版本,使我们能够探索准确性和泛化之间的各种权衡。最后,为了检验我们的理论预测,我们研究了 Ising 自旋链的量子相的分类,并提出了变分量子信息瓶颈方法来优化经典数据的量子嵌入以利于泛化。
心理学和神经科学中的抽象认知模型广泛认为人脑保持了任务的抽象表示。这个假设对于解释我们如何快速学习,创造性思考和灵活地采取行动的理论至关重要。然而,缺乏可见生成的抽象任务表示的神经证据。在这里,我们报告了一个实验范式,该范式需要形成这样的表示,以在新的条件下自适应地行动而无需反馈。使用功能性磁共振成像,我们观察到抽象任务结构在左侧前额叶皮层,双侧前序和下顶层皮质内表示。这些结果为我们可以验证其影响的环境中长期支持的抽象任务表示的神经实例化提供了支持。这样的表示可以提供大量的行为灵活性,而无需额外的经验,这是人类认知的重要特征。
深度神经网络作品(DNN)的一个长期问题是了解他们令人困惑的概括能力。We approach this prob lem through the unconventional angle of cogni tive abstraction mechanisms , drawing inspiration from recent neuroscience work, allowing us to define the Cognitive Neural Activation metric (CNA) for DNNs, which is the correlation be tween information complexity (entropy) of given input and the concentration of higher activation values in deeper layers of the network.CNA具有高度预测的概括能力,在对近200个网络实例的广泛评估中进行基于规范和偏见的概括指标,其中包括数据集构造组合的广度,尤其是在存在加性噪声的情况下,并且存在/或培训标签被损坏。这些强大的EM PIRICAL结果表明,CNA作为概括度量的有用性,并鼓励对信息复杂性与更深层次网络中的表示之间的联系进行进一步研究,以便更好地了解DNN的概括能力。1
摘要:最坏的数据生成(WCDG)概率度量是作为表征机器学习算法的概括功能的工具。这样的WCDG概率度量被证明是两个不同优化问题的独特解决方案:(a)在数据集中,预期损失的最大化是在数据集中的相对熵相对于参考度量的一组概率测量值的最大化; (b)相对于参考度量,通过相对熵的正则化对预期损失的最大化。这样的参考度量可以解释为数据集中的先验。WCDG累积物是有限的,并根据参考度量的累积量进行了界定。分析WCDG概率度量引起的预期经验风险的浓度,引入了模型的(ϵ,δ) - 固定性的概念。闭合形式表达式显示了固定模型的预期损失的灵敏度。这些结果导致了新的表达式,用于任意机器学习算法的概括误差。这些表达式可以大致分为两个类。第一个涉及WCDG概率度量,而第二个涉及Gibbs算法。此发现表明,对Gibbs算法的概括误差的探索促进了适用于任何机器学习算法的总体见解的推导。