生物科学助理教授,赖斯大学的实验室成员寻求从发育过程中神经和免疫系统之间的复杂相互作用,从大脑前哨细胞的角度来看,在发育,体内平衡和神经变性过程中之间的复杂相互作用。我们的主要目标是了解这些关键神经胶质细胞中小胶质细胞生物学的基本原理和溶酶体途径的激活。我们通过利用这种脊椎动物模型有机体的许多实验优势来研究其利基市场中的小胶质细胞,例如实时成像的可访问性,大规模CRISPR筛选的可行性以及可视化微量胶质细胞的可视性。
该研究主题重点介绍了我们对神经胶质在神经疾病中作用的理解的最新进展,特别关注神经发育障碍。这是神经科学中新兴的领域,因为长期以来认为神经胶质细胞在大脑中具有简单的支撑作用。研究主题由两篇研究文章和两次评论组成,突出了神经胶质细胞在不同的神经发育障碍中的作用。结节性硬化症复合物(TSC)是一种遗传疾病,其特征是TSC1或TSC2基因的功能丧失,导致雷帕霉素(MTOR)途径在分子水平上的机理靶标过度激活。mTOR失调导致皮质发育改变,导致形成称为块茎的局灶性病变,这些局灶性病变与包括癫痫在内的广泛的神经系统表现相关。对星形胶质细胞在这种疾病中的贡献有很少的了解。Luinenburg等人的研究。研究了与TSC患者衍生的诱导的多能干细胞不同的星形胶质细胞与疾病相关的表型,并在二维中培养。TSC星形胶质细胞表现出降低的成熟度,无法通过谷氨酸转运蛋白和受体的表达降低,谷氨酰胺连接酶和衔接蛋白以及吞噬活性的降低,无法清除过量的细胞外谷氨酸。这项研究进一步了解了我们对TSC中星形胶质细胞缺陷的理解,并为TSC治疗提供了新的潜在途径,该途径的重点是星形胶质细胞。这是智力残疾和自闭症的主要原因之一。Talvio和Castrén的综述着重于脆弱X综合征(FXS)的星形胶质细胞功能障碍,这是由于缺乏脆弱的X智力低下蛋白(FMRP)引起的神经发育障碍。与Luinenburg等类似。研究,该评论指出了FXS中星形胶质成熟的动力学改变。它为参与FXS发病机理的其他细胞自主星形胶质细胞表型提供了证据,例如改变,钙信号传导,脂质稳态和炎症活性。此外,FXS星形胶质细胞有效的突触功能,可能参与FXS中神经元发育异常。自闭症谱系障碍(ASD)是一种复杂的神经发育障碍,越来越多的证据表明,神经胶质细胞功能障碍可能有助于其病理生理学。此外,能量代谢对于正常的脑发育至关重要,代谢改变会导致不同的神经发育障碍。Cantando等人的评论。描述了发育中产后脑的星形胶质细胞和小胶质细胞的代谢
AEA N-arachidonoylethanolamine or anandamide AP-1 Activator protein 1 BBB Blood-brain barrier BDNF Brain-derived neurotrophic factor cAMP Cyclic adenosine monophosphate CB1 Cannabinoid receptor 1 CB2 Cannabinoid receptor 2 CBD Cannabidiol CBDA Cannabidiolic acid CBG Cannabigerol CBGV Cannabigivarin CNS Central nervous system COX-2 Cyclooxigenase-2 DAGL Diacylglycerol lipase DAMPs Danger associated molecular patterns eCB Endocannabinoid ECS Endocannabinoid system ERK Extracellular signal-regulated kinase FAAH Fatty acid amide hydrolase GFAP Glial fibrillary acidic protein GPCR G protein-coupled receptor HMGB1 High mobility group box 1 HPC Hippocampus Iba1 Ionized calcium binding adaptor molecule 1 IL Interleukin INF-γ Interferon gamma iNOS Inducible nitric oxide synthase IκBα Inhibitory kappa Bα LPS Lipopolysaccharide MAGL Monoacylglycerol lipase MCP-1 Monocyte chemoattractant protein 1 MCSF Macrophage刺激因子MD2粒细胞分化蛋白-2 MHCII主要组织相容性复杂II MIP-1α巨噬细胞炎症蛋白1αmiRNA MicroRNA MRNA MIRNA MRF-1小胶质细胞反应因子1 MyD88髓样分化因子88与2个相关因子2 NF-κB核因子-kappa b oeA乙醇酰胺
神经营养因子,包括NGF,BDNF和神经胶质细胞系的神经营养因子(GDNF),通过激活诸如PI3K/AKT和MAPK/ERK PATH的细胞内信号传导级联,刺激神经元存活和轴突伸长。该信号传导促进了细胞骨架重排和生长锥的进步。再生轴突的再生对于恢复神经传导速度至关重要[6]。尽管周围神经具有内在的再生能力,但较大的神经间隙和未对准的纤维仍然是重大挑战。这需要辅助策略,例如神经移植,导管和生物材料来弥合缺陷并优化再生环境[7]。
基于纳米粒子的新疗法在高级别胶质瘤 (HGG) 中的临床转化仍然非常少。部分原因是缺乏合适的临床前小鼠模型,无法复制复发性 HGG (rHGG) 的复杂特征,即血脑屏障 (BBB) 的异质结构和功能特征。本研究的目的是将 rHGG 的肿瘤 BBB 特征与两种不同的 HGG 小鼠模型(普遍使用的 U87 细胞系异种移植模型和患者衍生的细胞系 WK1 异种移植模型)进行比较,以评估它们是否适合纳米医学研究。方法:使用结构 MRI 评估完全发育肿瘤的小鼠模型中 BBB 开放的程度,并使用动态对比增强 MRI 获取对比增强肿瘤中 BBB 通透性的值。使用 H&E 和免疫荧光染色来验证体内成像研究的结果。结果:U87 模型中对比增强肿瘤中 BBB 破坏程度和通透性明显高于 rHGG。WK1 模型中的这些值与 rHGG 相似。U87 模型不具有浸润性,具有完全异常和渗漏的血管系统,并且不是神经胶质来源。WK1 模型浸润到非肿瘤性脑实质中,它既有完整的 BBB 区域,也有渗漏的 BBB 区域和神经胶质来源残留区域。结论:与 U87 小鼠模型相比,WK1 小鼠模型更准确地再现了 rHGG 患者的 BBB 破坏程度、BBB 通透性水平和组织病理学特征,因此是用于对新兴的基于纳米颗粒的 HGG 疗法进行临床前评估的更具临床相关性的模型。
1。全球对痴呆症2017- 2025年公共卫生响应的行动计划。世界卫生组织; 2017。许可证:CC BY-NC-SA 3.0 Igo。2。Jack CR,Bennett DA,Blennow K等。 NIA-AA研究框架:迈向对阿尔茨海默氏病的生物学定义。 阿尔茨海默氏症痴呆症。 2018; 14:535-562。 https://doi.org/10.1016/j.jalz.2018.02。 018。 3。 PalmQvist S,Insel PS,Stomrud E等。 脑脊液和血浆生物标志物轨迹随着阿尔茨海默氏病的增加而增加。 embo mol Med。 2019; 11:E11170。 4。 lleóA,Irwin DJ,Illán-Gala I等。 一种2步脑脊算法,用于选择额颞叶变性亚型。 JAMA NEUROL。 2018; 75:738-745。 5。 de Meyer S,Schaeverbeke JM,Verberk IMW等。 比较基于ELISA和SIMOA的基于血浆Abeta比率的定量,以早期检测到脑淀粉样变性。 阿尔茨海默氏症。 2020; 12:162。 6。 Chatterjee P,Pedrini S,Stoops E等。 血浆胶质纤维酸性蛋白在认知正常的老年人中升高,患有阿尔茨海默氏病风险。 翻译精神病学。 2021; 11。 7。 Verberk IMW,Thijssen E,Koelewijn J等。 血浆淀粉样β(1-42/1-40)和神经胶质纤维酸性蛋白的组合强烈Jack CR,Bennett DA,Blennow K等。NIA-AA研究框架:迈向对阿尔茨海默氏病的生物学定义。阿尔茨海默氏症痴呆症。2018; 14:535-562。 https://doi.org/10.1016/j.jalz.2018.02。 018。 3。 PalmQvist S,Insel PS,Stomrud E等。 脑脊液和血浆生物标志物轨迹随着阿尔茨海默氏病的增加而增加。 embo mol Med。 2019; 11:E11170。 4。 lleóA,Irwin DJ,Illán-Gala I等。 一种2步脑脊算法,用于选择额颞叶变性亚型。 JAMA NEUROL。 2018; 75:738-745。 5。 de Meyer S,Schaeverbeke JM,Verberk IMW等。 比较基于ELISA和SIMOA的基于血浆Abeta比率的定量,以早期检测到脑淀粉样变性。 阿尔茨海默氏症。 2020; 12:162。 6。 Chatterjee P,Pedrini S,Stoops E等。 血浆胶质纤维酸性蛋白在认知正常的老年人中升高,患有阿尔茨海默氏病风险。 翻译精神病学。 2021; 11。 7。 Verberk IMW,Thijssen E,Koelewijn J等。 血浆淀粉样β(1-42/1-40)和神经胶质纤维酸性蛋白的组合强烈2018; 14:535-562。 https://doi.org/10.1016/j.jalz.2018.02。018。3。PalmQvist S,Insel PS,Stomrud E等。脑脊液和血浆生物标志物轨迹随着阿尔茨海默氏病的增加而增加。embo mol Med。2019; 11:E11170。 4。 lleóA,Irwin DJ,Illán-Gala I等。 一种2步脑脊算法,用于选择额颞叶变性亚型。 JAMA NEUROL。 2018; 75:738-745。 5。 de Meyer S,Schaeverbeke JM,Verberk IMW等。 比较基于ELISA和SIMOA的基于血浆Abeta比率的定量,以早期检测到脑淀粉样变性。 阿尔茨海默氏症。 2020; 12:162。 6。 Chatterjee P,Pedrini S,Stoops E等。 血浆胶质纤维酸性蛋白在认知正常的老年人中升高,患有阿尔茨海默氏病风险。 翻译精神病学。 2021; 11。 7。 Verberk IMW,Thijssen E,Koelewijn J等。 血浆淀粉样β(1-42/1-40)和神经胶质纤维酸性蛋白的组合强烈2019; 11:E11170。4。lleóA,Irwin DJ,Illán-Gala I等。一种2步脑脊算法,用于选择额颞叶变性亚型。JAMA NEUROL。 2018; 75:738-745。 5。 de Meyer S,Schaeverbeke JM,Verberk IMW等。 比较基于ELISA和SIMOA的基于血浆Abeta比率的定量,以早期检测到脑淀粉样变性。 阿尔茨海默氏症。 2020; 12:162。 6。 Chatterjee P,Pedrini S,Stoops E等。 血浆胶质纤维酸性蛋白在认知正常的老年人中升高,患有阿尔茨海默氏病风险。 翻译精神病学。 2021; 11。 7。 Verberk IMW,Thijssen E,Koelewijn J等。 血浆淀粉样β(1-42/1-40)和神经胶质纤维酸性蛋白的组合强烈JAMA NEUROL。2018; 75:738-745。5。de Meyer S,Schaeverbeke JM,Verberk IMW等。比较基于ELISA和SIMOA的基于血浆Abeta比率的定量,以早期检测到脑淀粉样变性。阿尔茨海默氏症。2020; 12:162。6。Chatterjee P,Pedrini S,Stoops E等。血浆胶质纤维酸性蛋白在认知正常的老年人中升高,患有阿尔茨海默氏病风险。翻译精神病学。2021; 11。7。Verberk IMW,Thijssen E,Koelewijn J等。血浆淀粉样β(1-42/1-40)和神经胶质纤维酸性蛋白的组合强烈
在发育过程中,脑皮质中的神经干细胞(也称为径向神经胶质细胞(RGC))产生兴奋性神经元,然后产生迁移到嗅球(OB)的皮质大型神经元和抑制性神经元。了解这种谱系开关的机制对于揭示如何控制适当数量的不同神经元和神经胶质细胞类型的基础。我们和其他人最近表明,声音刺猬(SHH)信号传导促进了皮质RGC谱系开关以生成皮质少突胶质细胞和OB中间神经元。在此过程中,皮质RGC会产生中间祖细胞,以表达关键的神经胶质发生基因ASCL1,EGFR和OLIG2。EGFR +和Olig2 +皮质祖细胞的ASCL1表达和外观增加与从兴奋性神经发生转变为皮质中的神经胶质发生和OB间神经元神经发生。虽然SHH信号促进了发育中的脊髓中的Olig2表达,但该转录调节的确切机制尚不清楚。此外,尚未探索Olig2和EGFR的转录调节。在这里,我们表明,在皮质祖细胞中,包括PAX6和GLI3在内的多个调节程序,可以防止早熟表达Olig2,这是生产皮质少突胶质细胞和星形胶质细胞的基因。我们确定了控制皮质祖细胞中Olig2表达的多个增强剂,并表明调节olig2表达的机制在小鼠和人之间是保守的。我们的研究揭示了控制皮质神经干细胞谱系转换的进化保守的调节逻辑。
抽象的人牙纸浆干细胞移植已被证明是脊髓损伤的有效治疗策略。然而,人类牙髓干细胞分泌组是否可以在脊髓损伤后有助于功能恢复。在本研究中,我们建立了一种基于体重下降的撞击损伤,然后腹膜内的大鼠模型向大鼠注射来自人类牙髓干细胞的条件培养基。我们发现,条件培养基有效地促进了大鼠脊髓损伤的感觉和运动功能的恢复,小胶质细胞刺病标记物的表达降低了NLRP3,GSDMD,CASPASE-1和INTREUUKIN-1β,并促进了轴突结束,并促进了肌蛋白的再生,并促进了Glial Scars的形成。此外,在脂多糖诱导的BV2小胶质细胞模型中,通过抑制NLRP3/CASPASE-1/interleukin-1β途径,从人牙浆干细胞中调节培养基免受凋亡。这些结果表明,来自人类牙髓干细胞的条件培养基可以通过抑制NLRP3/caspase-1/interleukin-1β途径来减少小胶质细胞的凋亡,从而促进脊髓损伤后神经功能的恢复。因此,来自人类牙髓干细胞的条件培养基可能成为脊髓损伤的替代疗法。关键词:bv2;条件培养基;牙髓干细胞; GSDMD;小胶质细胞;神经炎症; nlrp3;凋亡;脊髓损伤
* P <0.05;** P <0.01;*** P <0.001,按 Spearman 等级相关系数计算,其中阴影代表相关系数 (r)。BMI,体重指数;CSF,脑脊液;CHIT1,壳三糖苷酶-1;EDSS,扩展残疾状况量表;Gd +,钆增强;GFAP,胶质纤维酸性蛋白;MS,多发性硬化症;NfL,神经丝轻链;SEL,缓慢扩展性病变;SERPINA3,丝氨酸蛋白酶抑制剂家族 A 成员 3;T2LV,T2 病变体积。a 包括所有基线 CSF 样本已检测 CHIT1 和 SERPINA3 水平的参与者(n=109)。10
简介小胶质细胞被归类为中枢神经系统(CNS)的驻留免疫细胞,并将其指出为神经脱发疾病开发的关键参与者1。通过研究小鼠大脑,在八十年代末和九十年代初发现了这些细胞,并表明小胶质细胞是在整个大脑和脊髓中分布的单核细胞,占脑parenchyma 2的胶质细胞群体的20%以上。小胶质细胞是脑实质中唯一的免疫防御。感染的这些免疫警惕性促进并促进了先天和适应性反应,并参与了许多不同的作用,例如突触和联系的形成,神经元增殖和分化,以及大脑体内平衡的主要经济体在健康和疾病中。通常,小胶质细胞会在炎症条件下通过激活强烈的免疫反应并支撑组织修复和重塑4来保护大脑4。小胶质细胞通过促进形态变化有效地对病原体和脑创伤有效反应。他们通过迁移到发生感染或受伤的部位来应对病原体和伤害,改变其形态,并破坏病原体以去除受损细胞和碎屑5,6。这些神经胶质细胞分泌细胞因子,趋化因子,活性氧和前列腺素,作为免疫反应的一部分7,8。相反,小胶质细胞可以调节并增加过度刺激时的大坝为中枢神经系统,从而产生许多作者命名为反应性神经病的条件9,10。因此,已经研究了许多不同类型的感染,脑创伤,神经退行性疾病和其他几种疾病11-14的小胶质细胞反应。然而,术语“反应性神经病”,“活化的微胶质”或“过度活化的小胶质细胞”可能不是代表几种形态学,生理,