6 澳大利亚维多利亚州墨尔本皇家儿童医院儿童癌症中心,7 澳大利亚维多利亚州墨尔本默多克儿童研究所干细胞医学系,8 澳大利亚维多利亚州墨尔本墨尔本大学儿科系,9 澳大利亚维多利亚州墨尔本彼得麦卡勒姆癌症中心肿瘤医学系,10 澳大利亚维多利亚州帕克维尔沃尔特和伊丽莎霍尔研究所 (WEHI) 个性化肿瘤学部,11 澳大利亚维多利亚州帕克维尔墨尔本大学医学生物学系,12 澳大利亚南澳大利亚州阿德莱德南澳大利亚健康与医学研究所儿科神经肿瘤学、精准癌症医学,13 澳大利亚南澳大利亚州阿德莱德阿德莱德大学南澳大利亚免疫基因组学癌症研究所,14 澳大利亚西澳大利亚州内德兰兹珀斯儿童医院儿科和青少年肿瘤学/血液学系,
1 斯特拉斯堡大学医院病理学系,67098 斯特拉斯堡,法国 2 UMR CNRS 7021,生物成像和病理学实验室,肿瘤信号和治疗靶点,药学院,67405 lllkirch,法国 3 斯特拉斯堡大学医院生物资源中心,67098 斯特拉斯堡,法国 4 斯特拉斯堡大学医院神经外科系,67098 斯特拉斯堡,法国 5 斯特拉斯堡大学医院神经内科系,67098 斯特拉斯堡,法国 6 斯特拉斯堡大学欧洲癌症研究所 (ICANS) 肿瘤学系,67200 斯特拉斯堡,法国 7 斯特拉斯堡大学 ICANS 放射治疗系, 67200 斯特拉斯堡,法国 8 斯特拉斯堡大学医院生物化学实验室肿瘤生物学平台,67098 斯特拉斯堡,法国 9 斯特拉斯堡大学医院放射科,67098 斯特拉斯堡,法国 10 斯特拉斯堡大学医院儿科肿瘤血液科,67098 斯特拉斯堡,法国 * 通讯地址:benoit.lhermitte@chru-strasbourg.fr(BL);natacha.entz-werle@chru-strasbourg.fr(NE-W.);电话:+33-3-88-12-84-41(BL);+33-3-88-12-83-96(NE-W.)
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
审查分子分析的抽象目的可以评估遗传改变,以诊断和分类神经胶质瘤和选择适当的疗法。本综述总结了分子分析和靶向疗法的当前作用。最近的发现分子分析是2021年WHO胶质瘤分类的组成部分。由于许多因素的存在和肿瘤异质性问题,靶向疗法发展的进展仍然有限。 Nonetheless, advances have been made with the IDH1/2 inhibitor vorasidenib for IDH-mutant grade 2 gliomas, the combination of dabrafenib and trametinib for BRAF V600E mutated gliomas, and the therapies for subsets of patients with fusions and H3K27M-altered diffuse midline gliomas. 总结虽然分子分析用于分类和治疗神经胶质瘤的进展,但有针对性疗法仍有许多工作以实现其潜力。靶向疗法发展的进展仍然有限。Nonetheless, advances have been made with the IDH1/2 inhibitor vorasidenib for IDH-mutant grade 2 gliomas, the combination of dabrafenib and trametinib for BRAF V600E mutated gliomas, and the therapies for subsets of patients with fusions and H3K27M-altered diffuse midline gliomas.总结虽然分子分析用于分类和治疗神经胶质瘤的进展,但有针对性疗法仍有许多工作以实现其潜力。
背景:神经胶质瘤是最常见的原发性脑肿瘤类型,其潜在的分子异质性导致不同的治疗反应。我们的回顾性研究旨在从大量神经胶质瘤患者中探究生物标志物,以确定具有治疗意义的改变。方法:采用多平台方法分析了 871 个神经胶质瘤肿瘤样本(79% 为 WHO IV 级胶质母细胞瘤,GBM),包括测序、IHC、FISH/CISH 和甲基化检测,以研究可操作的生物标志物异常。对整个患者队列和患者分子亚组进行了回顾性数据分析。结果:在 871 个患者样本中发现 27 个基因发生突变。观察到神经胶质瘤中常见的 TP53(39%)、IDH1(22%)、PTEN(13%)和以前未报告的突变,包括 JAK3、SMO 和 ABL1。37% 的病例发生 2 个或更多基因的共同突变。 TP53 突变提示遗传不稳定性,且常与其他并发突变相关(p=0.0006)。IDH1 突变与 MGMT 启动子甲基化、TS、RRM1 和 TOP2A 低表达相关(p 从 <0.0001 到 0.0036),提示对替莫唑胺、氟嘧啶、吉西他滨和依托泊苷的反应不同。IDH1 突变也与 TP53 突变相关;而野生型 IDH1 与 PTEN 突变相关(p=0.0309),且与 EGFR 突变有一定关联(p=0.0543)。在将 GBM 与 II/III 级胶质瘤进行比较时,还观察到 IHC、FISH 和测序得出的不同生物标志物谱,提示 GBM 的生物学特性不同,因此治疗意义也不同。对 20 名 GBM 患者进行了治疗前后分析(正在进行比较分析)。结论:多平台分析显示,胶质瘤表现出高度的分子异质性。IDH1 突变可识别对治疗剂反应不同的患者的分子亚群;而 TP53 突变则表明遗传不稳定性增加。这些结果凸显了分析在考虑胶质瘤患者的治疗方案时的好处。背景
拉曼光谱法(RS)越来越多地应用于医疗领域,以区分肿瘤与正常组织,最近的进步使其在神经外科手术中使用。本评论探讨了RS作为脑神经胶质瘤的诊断和手术辅助,详细介绍了其各种方式和应用。通过包括PubMed,Google Scholar和Elibrary在内的数据库中的全面搜索,筛选了300多个参考文献,从而产生了74篇符合纳入标准的文章。关键发现揭示了RS在神经肿瘤学上的潜力,用于检查天然活检标本,冷冻和石蜡包含的组织以及体液以及进行术中评估。rs提供了鉴定神经胶质瘤,将其与健康脑组织区分开的希望,并在切除过程中建立精确的肿瘤边界。
摘要。- 1型神经纤维瘤病(NF1)是一种常染色体显性遗传疾病,其性疾病的风险增加,患有多种良性和恶性肿瘤。少年至20%的NF1儿童在7岁之前被诊断出患有视神经胶质瘤(NF1-OPG),其中超过一半的视觉下降。目前,在受NF1-OPG影响的受试者中,尚无有效的治疗可预防,恢复甚至稳定视力丧失。本文旨在回顾最近在临床前和临床环境中评估的主要新兴药理方法。我们对embase,PubMed和Scopus数据库进行了搜索,以识别有关NF1-OPG的文章及其治疗的文章,直到2022年7月1日。分析文章的参考列表也被认为是文献信息的来源。要搜索和分析所有相关的英语艺术品,以下关键字用于各种组合:神经纤维瘤病1型,视觉途径胶质瘤,化学疗法,精密医学,MEK抑制剂,VEGF,VEGF,神经生长因子。在过去的十年中,基础研究以及与NF1相关的OPG的基因工程小鼠模型的开发揭示了未疾病的细胞和分子机制,并激发了几种化合物的动物和人类测试。一项研究线的重点是抑制MTOR,MTOR是一种控制蛋白质的蛋白激酶,蛋白质合成速率和细胞促进性,该蛋白质合成速率和细胞杂质在肿瘤细胞中高度表达。在临床试验中已经测试了几个MTOR阻滞剂,最近的试验使用了口服Everolimus,结果令人鼓舞。不同的策略旨在恢复肿瘤星形胶质细胞和非肿瘤性神经的营地水平,因为降低了细胞内营地水平有助于OPG生长,并且更重要的是 -
缩写:AI = 人工智能;AUC = 受试者工作特征曲线下面积;CNN = 卷积神经网络;ML = 机器学习;PCNSL = 原发性中枢神经系统淋巴瘤;PRISMA = 系统评价和荟萃分析的首选报告项目;PROBAST = 预测模型研究偏倚风险评估工具;TRIPOD = 个体预后或诊断的多变量预测模型的透明报告 胶质瘤是中枢神经系统最常见的原发性恶性肿瘤。1 胶质瘤的一个重要的鉴别诊断是原发性中枢神经系统淋巴瘤 (PCNSL),这是一种较少见但恶性程度极高的肿瘤。2 正确区分这些肿瘤实体对临床医生来说是一项重要的挑战,因为 2021 年 7 月 26 日收到;2022 年 1 月 31 日修订后接受。
抽象的弥漫性中线神经瘤H3 K27M改变是在2021年世界卫生组织(WHO)分类中的最近更名为中枢神经系统肿瘤的分类,此前曾被标记为差异中线胶质瘤H3 K27M Mutant在2016年更新,并在2016年更新,并在2016年更新和diffuse Interinsic pontinsic plihoma gli瘤在鉴定出导致H3 K27降压化的多次变化后,改变了该肿瘤亚型的定义。为了进一步描述小儿和成人人口中的新实体,我们对当前文献进行了综述,研究了遗传学,流行病学,临床,放射学,组织病理学,治疗和预后特征,尤其是突出了成人和儿童之间的差异。这种肿瘤在儿童中更常见,预后较差。此外,儿童期H3 K27改变的神经胶质瘤在脑干中更为常见,但在成年人的丘脑中更常见。可悲的是,这些肿瘤存在有限的治疗选择,放射疗法是唯一可改善总体生存的治疗方法。
摘要 米托蒽醌是一种高细胞毒性抗肿瘤药物,然而,它对血脑屏障的穿透性差,限制了它在治疗脑癌中的作用。我们假设动脉内 (IA) 输送米托蒽醌可能会增强其在大脑区域沉积的能力,从而扩大其作为脑肿瘤治疗剂的潜力。在本研究中,我们评估了米托蒽醌在啮齿动物模型中输送到大脑特别是神经胶质瘤的剂量反应特性以及可行性和安全性。我们表明,与没有低灌注的静脉内和 IA 输送相比,利用动脉内瞬时脑灌注不足 (IA-TCH) 技术进行输送优化有助于实现最高的峰脑和终脑药物浓度。此外,我们观察到通过 IA-TCH 方法输送时米托蒽醌有显著的肿瘤特异性摄取。未观察到米托蒽醌的 IA-TCH 输送的不良反应。 IA-TCH 方法已被证明是一种安全、可耐受且可行的将米托蒽醌输送至测试的胶质瘤模型中的肿瘤的策略。有必要进行进一步研究以确定 IA-TCH 输送米托蒽醌是否产生临床相关益处。