hayabusa/hayabusa2小行星探索 - 使用离子发动机实现空间导航 - hayabusa/hayabusa2小行星探索 - 离子发动机深空操作 -
摘要:小行星采矿通过从近地天体 (NEO) 中提取有价值的材料,有可能缓解地球的资源稀缺问题。这一新兴产业的关键推动因素是太阳能,它为太空作业提供了可持续和高效的能源。本文探讨了太阳能在小行星采矿中的作用,重点介绍了光伏技术的进步和太阳帆电力系统的进展。本文还探讨了太阳能采矿作业的经济可行性、环境考虑因素和未来挑战。随着太空探索的进展,太阳能有望通过小行星采矿在太空经济发展中发挥核心作用。关键词:光伏电池、小行星采矿、太阳能帆船、推进系统、IKAROS、隼鸟号、隼鸟 2 号、太阳能帆 1. 简介几十年来,人类已经知道太空中存在有价值的矿物。事实上,目前的理论推测,绝大多数比铁重的金属之所以沉入地核,是因为它们比原始行星的炽热半固体地壳密度大。我们在地壳上看到的许多重金属都是几十亿年前与小行星碰撞带到地球上的。(多伦多大学)随着人类文明对具有奇异性质的稀有金属的需求不断增加,一些人将目光从地下矿山转向了行星际空间中的小行星。将小行星上的材料带回地球一直是科幻小说的范畴,直到 2010 年日本宇宙航空研究开发机构 (JAXA) 发射并返回隼鸟号 (Amos)。此后,JAXA 的隼鸟 2 号和美国宇航局的 OSIRIS-REx 任务也成功地从小行星和彗星上带回了材料。然而,这些任务纯粹是探索性的,并非为商业采矿而设计的。在大规模开采小行星实现商业可行性之前,需要克服几个技术挑战。一个重大挑战是需要能源,既要操作采矿设备,又要将开采的矿石运送到可以提炼和利用的地点。虽然隼鸟号和 OSIRIS-REx 任务使用太阳能光伏阵列为其机载设备供电,但它们使用化学火箭或离子推进系统往返目标小行星。这些对于长期商业开采来说是不切实际的。太阳能因其丰富和可再生性,可能成为满足小行星采矿能源需求的可行候选者。除了光伏电池用于发电外,太阳能还可以通过太阳帆的形式用于推进。本文将讨论利用太阳能进行小行星采矿的关键发展,强调对开发太空资源日益增长的兴趣和可行性。小行星采矿的必要性小行星富含金属,包括铂、金和稀土元素,以及水和其他挥发物。这些资源可以开采并运回地球或
IHI Aerospace Co., Ltd.(以下简称“IA”)自首次开发铅笔火箭以来,一直致力于固体燃料火箭发射系统的研发。IA还支持了MV火箭的开发,MV火箭是一种各级均使用固体燃料的火箭,曾用于发射行星探测器“HAYABUSA”(日语中意为“猎鹰”),为固体火箭发射系统技术的进步做出了贡献(图1)。MV火箭的性能达到了世界最高水平,但由于成本高昂,在2006年9月发射太阳观测卫星“HINODE”(日语中意为“日出”)后,MV火箭停产。固体火箭作为小型卫星发射装置在世界范围内备受推崇,美国目前采用一种名为Minotaur的固体火箭,而欧洲国家则
引言 太阳系中的小天体代表着当今太空探索的前沿。 各种任务例如罗塞塔号 [ 1 ]、隼鸟 1 号 [ 2 ] 和隼鸟 2 号 [ 3 ] 以及奥西里斯-雷克斯 [ 4 ] 都已向这些目标发射,而其他任务也计划在未来执行 [ 5, 6 ]。 当到达小天体附近时,深空立方体卫星具有多样化和补充大型航天器任务的优势 [ 7 ]。 事实上,一旦主航天器到达目标,它们就可以被用作机会性有效载荷,部署在现场。 NASA 和 ESA 之间的 AIDA (小行星撞击和偏转评估) 合作就是一个例子,旨在研究和描述与 Didymos 小行星系统的撞击 [ 8 ]。作为此次合作的一部分,NASA 发射了 DART(双小行星重定向测试)动能撞击器航天器 [9],LICIACube 将于 2022 年秋季对其与次级小行星 Didymos 的撞击进行观测和表征 [10]。作为此次合作的一部分,ESA 将于 2024 年 10 月发射 Hera 任务 [6],同时发射两颗深空立方体卫星,分别是 Juventas [11] 和 Milani [12-14],以研究和表征该系统。2027 年 1 月 Hera 抵达后不久,在 20 到 30 公里的距离之间将进行早期表征阶段,旨在确定天体的形状和重力场。随后将在约 10-20 公里的距离处进行详细表征阶段。在此阶段,两颗立方体卫星将从 Hera 母舰上释放,增强任务的科学回报。 Juventas 将配备单基地低频雷达和加速度计,而 Milani 将携带 ASPECT [ 15 ] 可见光和近红外成像光谱仪以及 VISTA 热重仪 [16],以表征小行星周围的尘埃环境。自主光学导航 (OpNav) 是现在和未来探索任务的一项使能技术。这种技术利用图像处理 (IP) 方法提取一组光学可观测量,用于生成具有相关不确定性的状态估计。这种估计通常通过滤波获得,滤波将来自动力学的信息与观察模型相结合,以实现比单独应用 IP 高得多的精度。由于可以使用低成本和低质量的传感器在机载以低成本生成图像,因此 OpNav 的机载应用越来越受到关注。这对于立方体卫星任务尤其重要,因为立方体卫星任务通常在质量和功率方面受到严格限制。在接近小型飞机的情况下,可以利用 OpNav 通过允许自主操作和解锁执行关键操作的能力来降低运营成本。通过将 OpNav 功能与制导和控制算法相链接,在不久的将来,可以预见自主 GNC 系统将出现在自主探索任务中,届时将减少或完全消除人类在环。在这项工作中,我们首次介绍了 Milani 任务基于 OpNav 的 GNC 系统的主要特征,以及任务状态的最新概述。本文的其余部分组织如下。第二部分提供了 Milani 任务的一般概述。第三部分详细介绍了 Milani 的 GNC 系统。从第三部分 A 中的 IP 开始,然后是第三部分 B 中的导航和第三部分 C 中的制导和控制。最后介绍 Milani 的 GNC,简要概述了该系统的初步设计
