基因编辑有望通过直接纠正致病变异来最终治愈遗传病。然而,首次临床试验追逐的是“唾手可得的果实”,使用的编辑策略依赖于基因破坏,即通过引入双链 DNA 断裂,导致 NHEJ 通路插入和删除 (indel)。由于 NHEJ 在整个细胞周期和默认 DNA 修复通路中都处于组成性活跃状态,因此与同源定向修复 (HDR) 相比,这是迄今为止最有效的传统基因编辑类型。HDR 依赖于外源修复模板的递送,并且该通路仅在细胞周期的 S 和 G2 期活跃。这两个参数对 HDR 的临床应用构成了挑战,因为外源 DNA 在大多数治疗相关细胞类型中都是有毒的,并且 NHEJ 和 HDR 之间的固有竞争可能成为瓶颈。然而,HDR 的优势在于能够对基因组进行精确编辑,从而代表真正的基因编辑,并可控制结果。尽管如此,在这两种方式中,DNA 断裂都被认为是潜在的基因毒性来源,因为存在脱靶编辑和染色体畸变(如易位和染色体碎裂)的可能性。依赖于 DNA 单链切口的下一代基因编辑工具(如 Base Editing 和 Prime Editing)降低了此类有害事件的风险,但它们可以生成的编辑范围仍然有限(Anzalone 等人,2020 年)。基于 CRISPR 相关转座酶或 CRISPR 指导的整合酶的最新类型的编辑器可以促进更大规模的编辑,但仍在开发中,尚不成熟,无法用于临床实施(Yarnall 等人,2022 年;Tou 等人,2023 年)。这个快速发展的工具箱有望扩大基于 CRISPR 的工具和其他位点特异性工程核酸酶在治疗人类疾病中的应用。然而,在实现精准基因校正的这一过程中,仍存在一些尚未解决的问题和挑战需要克服,其中一些问题我们希望通过基于 CRISPR 系统或其他工程化位点特异性核酸酶的治疗性基因校正策略这一研究课题来解决。本研究课题涵盖了一系列贡献,包括精准基因工程的重大科学进展以及专家对最新进展的看法。
类器官可通过诱导多能干细胞和胚胎干细胞的引导分化生成,也可从从成体组织中分离的细胞生成 1 。成体干细胞 (ASC) 衍生的类器官是自组织结构,可重现其来源的不同上皮组织的细胞组成、三维 (3D) 结构和功能的各个方面,同时保持基因组稳定性 2、3 。从转基因小鼠品系(尤其是敲入模型)中获得类器官的可能性使得能够生成工程化小鼠类器官,这些类器官已被用作多功能体外工具来回答各种生物学问题 4 3 10 。生成工程化人类 ASC 衍生类器官需要在建立品系后应用有效的体外基因组编辑策略。CRISPR3Cas9 技术大大简化了基因工程。迄今为止,这些方法主要限于非同源末端连接 (NHEJ) 介导的将插入/缺失引入类器官内源性基因座,从而导致基因突变 11 3 14 。通过利用 HDR 通路,引入单碱基替换来纠正囊性纤维化肠道类器官中的 CFTR 基因座 15 ,并且已经生成了一些人类 ASC 类器官敲入报告系,但主要是在结肠癌类器官中 16 3 18 。使用 HDR 的敲入利用了细胞修复双链断裂 (DSB) 的机制。可以使用 CRISPR3Cas9 在特定位点引入此类断裂。HDR 是用于靶向插入的最常用方法,但该过程效率低下并且要求细胞处于 S 期 19,20 。此外,HDR 需要克隆供体质粒,因为需要存在每个基因特有的同源臂(图 1a)。最近的研究表明,CRISPR 诱导的 DSB 可激活
摘要:自 2012 年发现以来,成簇的规律间隔短回文重复序列 (CRISPR) 和 CRISPR 相关蛋白 9 (Cas9) 系统为开发新型、高精度的基于基因组编辑的基因治疗 (GT) 替代方案提供了广阔的前景,从而克服了与经典 GT 相关的挑战。经典 GT 旨在通过慢病毒 (LV) 或腺相关病毒 (AAV) 将转基因随机整合到基因组中或以游离形式持续进入细胞核,从而将转基因递送到细胞中。尽管使用 LV 或 AAV 可以实现高转基因表达效率,但它们的性质可能会对人类产生严重的副作用。例如,基于 LV(NCT03852498)和 AAV9(NCT05514249)的 GT 临床试验分别表明,用于治疗 X 连锁肾上腺脑白质营养不良症和杜氏肌营养不良症的 GT 出现了骨髓增生异常综合征和患者死亡。与经典 GT 相比,基于 CRISPR/Cas9 的基因组编辑需要细胞的同源直接修复 (HDR) 机制才能将转基因插入基因组的特定区域。这种复杂且受良好调控的过程在哺乳动物细胞的细胞周期中受到限制,而非同源末端连接 (NHEJ) 则占主导地位。因此,寻找提高 HDR 效率的方法,使其优于 NHEJ,至关重要。本文全面回顾了当前用于改进基于 CRISPR/Cas9 的 GT 的 HDR 的替代方案。
使用位点特异性核酸酶的可能基因组编辑结果概述。核酸酶诱导的 DNA 双链断裂 (DSB) 可以通过同源性定向修复 (HDR) 或易出错的非同源末端连接 (NHEJ) 进行修复。(A) 在存在具有延伸同源臂的供体质粒的情况下,HDR 可导致引入单个或多个转基因以纠正或替换现有基因。(B) 在没有供体质粒的情况下,NHEJ 介导的修复会在靶标处产生小的插入或缺失突变,从而导致基因破坏。在存在双链寡核苷酸或体内线性化供体质粒的情况下,通过 NHEJ 介导的连接插入长达 14 kb 的 DNA 片段。同时诱导两个 DSB 可导致中间片段的缺失、倒位和易位。
基因组编辑是一种利用工程核酸酶在特定基因组位置诱导双链断裂 (DSB) 的方法,以便利用细胞内源性 DNA 修复机制引入基因组修饰 [ 1 , 2 ]。DSB 形成后,细胞将利用两种修复机制中的一种——非同源末端连接 (NHEJ) 和同源性依赖性修复 (HDR),这两种机制均可用于诱导 DNA 变化 [ 3 , 4 ]。在 NHEJ 过程中,细胞将 DNA 的断裂末端重新连接在一起——这个过程很快但往往不准确,修复后的链通常包含小的突变,表现为小的缺失和插入 [ 5 , 6 ]。在基因组编辑中,NHEJ 用于通过功能丧失突变来灭活基因功能。HDR 是一个更复杂的过程,需要供体 DNA 与断裂的两侧都具有同源性。在 HDR 中,细胞处理 DSB 的末端,留下 3′突出端,这些突出端侵入供体 DNA 的同源位点,将其用作 DNA 合成的模板,从而纠正断裂并使其与供体 DNA 相同 [7]。虽然在自然界中,供体 DNA 是姐妹染色单体,但在基因组编辑中,外源 DNA 被引入细胞,作为模板,将所需的变化引入基因组 [8](图 1)。多年来,已有多种类型的工程核酸酶被用于诱导基因组编辑所需的 DSB,包括
AI赋能关键ISP模块,如HDR、3DNR、RLTM(实时低延迟监控)、去马赛克等通过AI训练不断提升这些模块性能,突破传统ISP成像的“天花板”。
OTOF 基因编码耳蜗内毛细胞中表达的耳蜗蛋白,其不同突变会诱发一种耳聋,而耳聋是人类无综合征隐性听觉神经病谱系障碍的主要原因。我们报告了使用与不同 Cas9 成分(mRNA 或蛋白质)相关的 CRISPR 系统,在单链寡脱氧核苷酸 (ssODN) 辅助下诱导同源定向修复 (HDR),生成了第一个 OTOF 突变大型动物模型。使用不同浓度的两个靶向外显子 5 和 6 的 sgRNA 与 Cas9 mRNA 或蛋白质 (RNP) 结合,并与靶向外显子 5 中 HDR 的 ssODN 模板混合,该模板包含两个 STOP 序列。共出生 73 只羔羊,其中 13 只出现插入/缺失突变(17.8%),其中 8 只(61.5%)通过 HDR 发生敲入突变。较高浓度的 Cas9-RNP 能更有效地诱导靶向突变,但对胚胎存活率和妊娠率有负面影响。本研究首次报道了 OTOF 破坏绵羊的产生,这可能有助于更好地理解和开发与遗传疾病相关的人类耳聋的新疗法。这些结果支持使用 ssODN 辅助的 CRISPR/Cas 系统作为牲畜基因编辑的有效工具。
Jean-Pierre BEDECARRATS 教授,LATEP,波城及阿杜尔地区大学 Kévyn JOHANNES 讲师(HDR),CETHIL,Claude Bernard 里昂第一大学 评审团组成: 主席:Régis OLIVES 教授,PROMES,佩皮尼昂 Via Domitia 大学 考官:Christian CRISTOFARI 教授,SPE,科西嘉岛大学 考官:Yilin FAN CNRS 研究官员(HDR),LTEN,南特大学 论文指导:Lingai LUO CNRS 研究主任,LTEN,南特大学 联合论文指导:Jérôme SOTO 副研究员,LTEN,南特大学 & 教师,ICAM 联合论文指导:Nicolas BAUDIN 讲师,LTEN,南特大学