摘要 本文通过对有源区耗尽层的分析,首次得出AlGaN/GaN HEMT中耗尽层过程不同于硅功率器件的结论。基于AlGaN/GaN HEMT这种特殊的破坏原理,提出了一种新的RESURF AlGaN/GaN HEMT结构,以降低表面电场,提高击穿电压。该结构在极化AlGaN层中引入两个不同的负电荷区,通过耗尽2DEG来降低高边缘电场;在近漏极加入正电荷,首次降低了漏极高电场峰值。应用ISE仿真软件,在器件中验证了虚拟栅极效应。
电子产品中的辐射损伤减轻仍然是一个挑战,因为唯一成熟的技术——热退火,并不能保证获得良好的结果。在本研究中,我们介绍了一种非热退火技术,其中使用来自非常短持续时间和高电流密度脉冲的电子动量来瞄准和调动缺陷。该技术在 60 Co 伽马辐照(5 × 10 6 拉德剂量和 180 × 10 3 拉德 h − 1 剂量率)GaN 高电子迁移率晶体管上进行了演示。在 30 °C 或更低温度下,饱和电流和最大跨导完全恢复,阈值电压部分恢复。相比之下,300 °C 下的热退火大多使辐照后特性恶化。拉曼光谱显示缺陷增加,从而降低了二维电子气 (2DEG) 浓度并增加了载流子散射。由于电子动量力不适用于聚合物表面钝化,因此所提出的技术无法恢复栅极漏电流,但性能优于热退火。这项研究的结果可能有助于减轻电子器件中某些形式的辐射损伤,而这些损伤很难通过热退火实现。© 2022 电化学学会(“ ECS ” )。由 IOP Publishing Limited 代表 ECS 出版。[DOI:10.1149/2162-8777/ ac7f5a ]
A. 具有 MBE 再生长 P-GaN 栅极的常关型 HEMT HEMT 结构的特点是具有 25 nm 厚的 AlGaN 势垒和 20 % 的铝率。首先,通过 PECVD(等离子增强气相沉积)沉积 100 nm 厚的氧化硅 SiO 2 层,作为 AlGaN 栅极蚀刻和选择性 GaN 再生长的掩模。在用 CF 4 RIE 蚀刻 SiO 2 层以确定栅极区域之后,通过 ICPECVD 对 AlGaN 层进行 Cl 2 部分蚀刻,条件如下:RF 功率为 60 W、压力为 5 mTorr 并且 Cl 2 流速为 10 sccm。蚀刻时间为 35 秒,去除了 19 nm 的 AlGaN。然后在 MBE(分子束外延)反应器中重新生长用镁(Mg)掺杂的 50 nm GaN 层,其标称受体浓度为 Na-Nd 为 4 x 10 18 cm -3。
功率放大器 (PA) 技术对于国防和商业领域毫米波 (mm-wave) 通信系统的未来至关重要。这些毫米波频率下的大气衰减很高,因此需要能够抵消这种影响的高功率 PA。氮化镓高电子迁移率晶体管 (GaN HEMT) 凭借其宽带隙和高电子速度,已成为在毫米波频率下提供高功率的主要竞争者。为了改进传统的 GaN HEMT 异质结构,我们之前在氮化铝 (AlN) 平台 [1] 上引入了 HEMT,使用 AlN/GaN/AlN 异质结构。二元 AlN 的最大化带隙可防止缓冲器漏电流并增加 HEMT 击穿电压,同时还提供更高的热导率以增强通道温度管理。此外,GaN 增加的极化偏移允许高度缩放的顶部势垒,同时仍能诱导高密度二维电子气 (2DEG)。我们最近展示了 RF AlN/GaN/AlN HEMT 中高达 2 MV/cm 的高击穿电压 [2],以及这些 HEMT 在 6 GHz 下的 RF 功率操作,功率附加效率为 55%,输出功率 ( ) 为 2.8 W/mm [3]。在这项工作中,我们展示了 AlN/GaN/AlN HEMT 的首次毫米波频率操作,显示峰值 PAE = 29%,相关 = 2.5 W/mm 和 = 7 dB 在 30 GHz 下。
基本上,微滤线的微型播放主要由µ LED阵列和电子零件组成,这些阵列和电子零件可电动驱动单个µ LED。当前,使用两种主要方法来整合µ LED阵列和电子零件。第一种方法是基于大规模转移技术的所谓“选择”,这意味着数百万的LED从晶片转移到晶体管背板,在晶体管背板上,非常高的精度约为1 µm,需要大量时间。结果,产率通常非常低,[13-16],因此这种方法对于制造微型播放是不切实际的,尤其是对于AR/VR应用。第二种方法是基于翻转芯片键合技术,其中µ LED和CMO(用于电动驱动单个µ LED)分别制造,然后将其合并晶片键合在一起。[17]但是,值得强调的是,第二种方法面临着两个主要的挑战。第一个挑战是由于组装问题。由于需要通过CMOS CUIT来驱动单独的可寻址µ LED,因此采用了一种异质的集成方法,用于与电动驱动零件的Combine µ LED。[4,8–13]在这种情况下,仍然存在µ LED和CMO之间对齐的准确性问题,因此仍然限制了转移产量,然后增加了制造成本。第二个挑战是由于µ LED的光学性能降解,其中µ LED是通过光刻技术和随后的干蚀刻过程制造的。[4-11]在这种干蚀刻和随访过程中,引入了严重的损害,从而导致µ LED的光学表现严重降解。[18,19]此外,随着缩小LED的规模,该问题的严重程度进一步增强。[18-22]尽管采用了使用原子层沉积(ALD)技术的额外钝化过程,但[22,23]由于在干etter蚀过程中造成的不可逆损害,光学性能的恢复是微不足道的。因此,用于制造微型播放的这种杂基整合方法仍然远非令人满意。我们认为,电气驱动的µ LED和高电子迁移式晶体管(HEMT)的外延整合
阈值电压不稳定很大程度上被归因于 p-GaN/AlGaN 堆栈中存在的两种竞争机制,即空穴和电子捕获,分别导致负和正的 V TH 偏移 [3-9]。其中一种机制的盛行程度可能取决于栅极偏压和温度 [3]、技术种类 [11] 以及应力 / 表征时间 [12]。总体而言,来自栅极金属的空穴注入和 / 或高场耗尽肖特基结中的碰撞电离已被确定为导致 V TH 不稳定的此类现象的根本原因。提出了一些工艺优化措施,例如降低栅极金属附近 p-GaN 层中的活性镁掺杂浓度 [11]、降低 AlGaN 势垒中的铝含量 [3] 以及优化 p-GaN 侧壁的蚀刻和钝化 [10],以限制正向栅极应力下的负和正 V TH 偏移。
摘要 — 我们报告了使用两种缓冲层用于毫米波应用的超薄(亚 10 nm 势垒厚度)AlN/GaN 异质结构的比较结果:1) 碳掺杂 GaN 高电子迁移率晶体管 (HEMT) 和 2) 双异质结构场效应晶体管 (DHFET)。观察到碳掺杂 HEMT 结构表现出优异的电气特性,最大漏极电流密度 I d 为 1.5 A/mm,外部跨导 G m 为 500 mS/mm,最大振荡频率 f max 为 242 GHz,同时使用 120 nm 的栅极长度。C 掺杂结构在高偏压下提供高频性能和出色的电子限制,可在 40 GHz 下实现最先进的输出功率密度(P OUT = 7 W/mm)和功率附加效率 (PAE) 组合,在脉冲模式下高达 V DS = 25V 时高于 52%。
研究了功率 AlGaN/GaN HEMT 系列的击穿失效机制。这些器件采用市售的 MMIC/RF 技术与半绝缘 SiC 衬底制造。在 425 K 下进行 10 分钟热退火后,对晶体管进行了随温度变化的电气特性测量。发现没有场板的器件的击穿性能下降,负温度系数为 0.113 V/K。还发现击穿电压是栅极长度的减函数。在漏极电压应力测试期间,栅极电流与漏极电流同时增加。这表明从栅极到 2-DEG 区域的直接漏电流路径的可能性很大。漏电流是由原生和生成的陷阱/缺陷主导的栅极隧穿以及从栅极注入到沟道的热电子共同造成的。带场板的器件击穿电压从 40 V(无场板)提高到 138 V,负温度系数更低。对于场板长度为 1.6 l m 的器件,温度系数为 0.065 V/K。2011 Elsevier Ltd. 保留所有权利。
适用于高可靠性应用的高压 GaN HEMT 现提供 15 A 和 30 A 低电流版本 加利福尼亚州米尔皮塔斯 – 2021 年 1 月 6 日 – Teledyne e2v HiRel 正在为其基于 GaN Systems 技术的业界领先的 650 伏高功率产品系列添加两款新型加固型 GaN 功率 HEMT(高电子迁移率晶体管)。两款新型高功率 HEMT TDG650E30B 和 TDG650E15B 分别提供 30 安和 15 安的低电流性能,而去年推出的原始 650 V TDG650E60 可提供 60 A 的电流。这些 650 V GaN HEMT 是市场上可用于要求高可靠性的军事、航空电子和太空应用的最高电压 GaN 功率器件。它们非常适合电源、电机控制和半桥拓扑等应用。它们采用底部冷却配置,具有超低 FOM Island Technology® 芯片、低电感 GaNPX® 封装、>100 MHz 的超高频开关、快速且可控的下降和上升时间、反向电流能力等。Teledyne e2v HiRel 业务开发副总裁 Mont Taylor 表示:“我们很高兴继续为太空等需要最高可靠性的应用推出 650 V 系列高功率 GaN HEMT。我们相信,这些新器件的较小尺寸封装将真正使客户受益于设计最高功率密度项目。”TDG650E15B 和 TDG650E30B 都是增强型硅基 GaN 功率晶体管,可实现大电流、高击穿电压和高开关频率,同时为高功率应用提供非常低的结到外壳热阻。氮化镓器件已经彻底改变了其他行业的电源转换,现在采用耐辐射的塑料封装,经过严格的可靠性和电气测试,以确保关键任务的成功。这些新型 GaN HEMT 的发布为客户提供了关键航空航天和国防电源应用所需的效率、尺寸和功率密度优势。对于所有产品线,Teledyne e2v HiRel 都会针对最高可靠性应用进行最严格的认证和测试。对于功率器件,此测试包括硫酸测试、高海拔模拟、动态老化、高达 175°C 环境温度的阶跃应力、9 伏栅极电压和全温度测试。与碳化硅 (SiC) 器件不同,这两种器件可以轻松并联实现,以增加负载电流或降低有效 RDSon。这两种新器件现在都可以订购和立即购买。
图3给出了不同AlN间隔层厚度下二维电子气密度的变化。间隔层厚度越高,片状电荷密度(ns)越好,在0.5nm~2nm之间与AlN间隔层厚度几乎呈线性关系。电子密度的增加是由于压电和自发极化的影响。由于明显的极化效应,AlN间隔层可能引起偶极散射增加,结果二维电子气迁移率下降。在此临界厚度以下,间隔层增强了导带位移,有效降低了波函数对AlN势垒的穿透,从而降低了合金无序扩散的影响。电子片密度为1.81×1013cm-2,与[15]中计算的1nm AlN层电子片密度大致相同。