基本上,微滤线的微型播放主要由μLED阵列和电子零件组成,这些阵列和电子零件可电动驱动单个μLED。当前,使用两种主要方法来整合μLED阵列和电子零件。第一种方法是基于大规模转移技术的所谓“选择”,这意味着数百万的LED从晶圆转移到晶体管背板,在晶体管背板中,非常高的精度约为1 µm,需要大量时间。结果,产率通常非常低,[13-16],因此这种方法对于制造微型播放是不切实际的,尤其是对于AR/VR应用。第二种方法是基于翻转芯片键合技术,其中μLED和CMO(用于电动驱动单个μLED)分别制造,然后将其合并晶片键合在一起。[17]但是,值得强调的是,第二种方法面临着两个主要的挑战。第一个挑战是由于组装问题。由于需要通过CMOS CUIT来驱动单独的可寻址LED,因此采用了一种异质的集成方法,用于与电动驱动零件的CombineμLED。[4,8–13]在这种情况下,仍然存在μLED和CMO之间对齐的准确性问题,因此仍然限制了转移产量,然后增加了制造成本。第二个挑战是由于μLED的光学性能降解,其中μLED是通过光刻技术和随后的干蚀刻过程制造的。[4-11]在这种干蚀刻和随访过程中,引入了严重的损坏,导致μED的光学效果严重降解。[18,19]此外,随着降低LED的尺寸,问题的严重程度进一步增强。[18-22]尽管采用了使用原子层沉积(ALD)技术的额外钝化过程,但[22,23]由于在干etter蚀过程中造成的不可逆损害,光学性能的恢复是微不足道的。因此,用于制造微型播放的这种杂基整合方法仍然远非令人满意。我们认为,电气驱动的LED和高电子迁移式晶体管(HEMT)的外延整合
摘要在这项工作中,已经使用脉冲模式电压应力分析了正常的p-gan algan/gan hemts对正常的p-gan algan/gan hemts降解的热效应。与Gan-On-Si Hemts的显着降解特性相比,由于更高的热边界导导,在Gan-On-SIC中抑制了降解的动态R,而离子化的受体样bu样陷阱较低。不同的电特性,以揭示与热效应相关的陷阱。最后,已经进行了二维设备模拟,以探究对降解动态R的热效应的物理洞察力。关键字:陷阱,降解的动态R,Algan/Gan Hemts,脉冲模式应力,底物,温度分类:电子设备,电路和模块(硅,硅,com-poundeminconductor,有机和新型材料)
自从 1981 年 Mimura 博士展示出第一个高电子迁移率晶体管 (HEMT) 以来,HEMT 得到了迅速发展,并在不同的材料系统中商业化,用于各种应用。在早期开发阶段,基于 AlGaAs/GaAs、GaAs/InGaAs 和 InP 的 HEMT 被广泛应用于高速电子通信应用中,具有出色的噪声和功率性能。GaN HEMT 的发展为更多应用打开了大门,例如电力电子、毫米波频率系统、生物传感和抗辐射电子。最近,基于 AlGaN 和 Ga2O3 的超宽带隙材料 HEMT 已被引入并显示出令人鼓舞的结果。本期特刊将介绍创新的 HEMT 设备、基于 HEMT 技术的应用、HEMT 相关材料研究,包括外延生长、材料特性和制造技术以及 HEMT 模拟。
a)应向其通信的作者:ll886@cornell.edu摘要用于毫米波电源应用,GAN高电子移动晶体管(HEMTS)通常在高纯度半胰岛的C轴c-轴4H-SIC 4H-SIC substrate上表现出现。对于这些各向异性六边形材料,微带和共浮标互连的设计和建模都需要详细了解普通介电常数ε⊥和非凡的介电常数ε||分别垂直于c轴。但是,常规的介电特性技术使得很难测量ε||单独或分开ε||来自ε⊥。结果,ε||几乎没有数据,特别是在毫米波频率下。这项工作演示了表征ε||的技术使用底物集成的波导(SIWS)或SIW谐振器的4H SIC。测得的ε||从110 GHz到170 GHz的七个SIW和11个谐振器中,在10.2的±1%以内。因为可以将SIW和谐振器与Hemts和其他设备一起在相同的SIC基板上制造,因此可以在磁力上方便地测量它们,以进行精确的材料磁盘相关性。这种介电常数技术可以扩展到其他频率,材料和方向。高纯度半胰岛六轴六边形4H SIC 1通常用作通过微带传输线(微一起)或接地的Coplanar saveguides(GCPWS)相互连接的毫米波GAN高电动型晶体管(HEMTS)的底物。1)。尽管“静态”ε⊥和ε||这需要精确了解SIC在毫米波频率下的电渗透率,以准确预测沿传输线的波浪的传播延迟和衰减。例如,在微带或GCPW上行进的准电磁(准TEM)波由普通介电常数ε⊥和非凡的介电常数ε||控制。分别垂直和平行于C轴(图
通过AlGaN/GaN/InGaN结构实现8 W mm 1,通过N极性GaN HEMT实现94 GHz时8 W mm 1 [3]。这些结果对于商业(5G及以上、汽车雷达)和国防(SATCOM、雷达)应用越来越重要,所有这些应用都在向毫米波频率范围(30 – 300 GHz)推进。为了进一步提高GaN HEMT的优势,我们的研究小组在氮化铝(AlN)缓冲层上引入了HEMT。[4 – 6]通过用AlN替换AlGaN顶部势垒并用AlN替换典型的GaN缓冲层,AlN/GaN/AlN异质结构具有更高的热导率、改善了薄GaN通道(<30nm)的载流子限制,并且与其他传统顶部势垒材料(如AlGaN或InAlN)相比,顶部势垒具有出色的垂直可扩展性。其他研究小组也展示了基于AlN 的器件的有希望的结果,包括基于AlN 衬底的HEMT,在X 波段实现15 W mm 1 [7] ,AlN 缓冲区击穿功率为 5 MV cm 1 [8] 。已经展示了使用AlN 顶部势垒的HEMT,包括GaN HEMT 记录f T = f max 为454/444 GHz,[9 – 11] PAE 为27% ,相关输出功率为1.3 W的W 波段功率放大器,[12] 噪声系数小于2的K a 波段低噪声放大器,[13] 以及40 GHz 时为4.5 W mm 1 [14] 。所有这些器件都基于AlN/GaN/AlGaN 异质结构。 AlN/GaN HEMT 已显示出 Ga 极性 HEMT 在 W 波段的创纪录输出功率,在 94 GHz 时 P out ¼ 4 W mm 1。[15] 除了射频 (RF) HEMT 之外,氮化铝还具有单片集成大电流 GaN/AlN p 型场效应晶体管 (pFET) [16 – 18] 和晶体 AlN 体声波滤波器 [19] 的潜力,这两者都是通过 AlN 缓冲层实现的。SiC 衬底以衬底集成波导 (SIW) 和天线的形式实现了进一步的集成。[20] 这种集成生态系统被称为 AlN 平台,使高功率氮化物互补金属氧化物半导体 (CMOS)、RF 滤波器、单片微波集成电路 (MMIC) 以及 RF 波导和天线共存于一个单片芯片上。[21]
摘要 —本文报告了增强型 (E-mode) p-GaN 栅极 Al-GaN/GaN 高电子迁移率晶体管 (HEMT) 的高温 (HT) 稳定性,重点介绍了数字和模拟混合信号应用的关键晶体管级参数。从室温 (RT) 到 500°C 的现场测量表明,VVV th、RRR ON、III D , max 和 III G , max 的趋势与基于半导体特性的一阶变化的预期基本一致。制备的晶体管在 500°C 下 20 天内表现出稳定的性能。据作者所知,这项工作是首次系统地研究 E-mode p-GaN 栅极 AlGaN/GaN HEMT 的 HT 性能,并揭示了它们在混合信号和低压电源电路中的应用。索引词 —GaN、p-GaN、晶体管、高温、长期生存
硅基氮化镓高电子迁移率晶体管 (HEMT) 以其低成本、大面积应用等优势在功率器件应用领域引起了广泛关注 [1]。近年来,双向开关在轧机、电梯、风力发电等许多工业双向功率转换应用中备受青睐。此外,常闭单向 HEMT 是实现高性能双向开关的重要器件 [2,3]。常闭单向 HEMT 通常通过在 HEMT 的漏极中嵌入肖特基势垒二极管 (SBD) 来实现。目前已经采用了氟注入或金属氧化物半导体技术。然而,在常闭单向 HEMT 中尚未见具有良好阈值电压 (V th ) 可控性和稳定性的 p-GaN 栅极技术 [4] 的报道。此外,凹陷式肖特基漏极[5]和场板技术[6]可以为实现具有小开启电压(V on )、高击穿电压(BV)和良好动态性能的单向HEMT提供相关参考。本研究通过实验证明了一种具有凹陷肖特基漏极和复合源漏场板的单向p-GaN HEMT(RS-FP-HEMT)。研究并揭示了漏极电压应力对动态性能的影响。实验。图1(a)和(b)分别显示了传统的带欧姆漏极的p-GaN HEMT(C-HEMT)和提出的RS-FP-HEMT的示意横截面结构。这两个器件都是在GaN-on-Si晶片上制造的。外延结构由 3.4 µ m 缓冲层、320 nm i-GaN 沟道层、0.7 nm AlN 中间层、15 nm Al 0.2 Ga 0.8 N 阻挡层和 75 nm p-GaN 层(Mg 掺杂浓度为 1 × 10 19 cm −3)组成。器件制造首先通过反应离子刻蚀 (RIE) 形成 p-GaN 栅极岛。然后,蒸发 Ti/Al/Ni/-Au 金属堆栈并在 N 2 环境中以 850 ◦C 退火 30 秒。形成凹陷的肖特基漏极
摘要 GaN HEMT 在高功率和高频电子器件中起着至关重要的作用。在不影响可靠性的情况下满足这些器件的苛刻性能要求是一项具有挑战性的工作。场板用于重新分配电场,最大限度地降低器件故障风险,尤其是在高压操作中。虽然机器学习已经应用于 GaN 器件设计,但它在以几何复杂性而闻名的场板结构中的应用是有限的。本研究介绍了一种简化场板设计流程的新方法。它将复杂的 2D 场板 2 结构转换为简洁的特征空间,从而降低了数据要求。提出了一种机器学习辅助设计框架来优化场板结构并执行逆向设计。这种方法并不局限于 GaN HEMT 的设计,可以扩展到具有场板结构的各种半导体器件。该框架结合了计算机辅助设计 (TCAD)、机器学习和优化技术,简化了设计流程。
当前的工作符合 CF 领域正在进行的努力,旨在满足所谓“最后 10%”的高度未满足的医疗需求,即 pwCF,根据其特定的基因型,这些患者不适合 HEMT 并且处于前调节剂时代。除了严重的错义突变之外,这些基因型还包括剪接、插入或缺失 (indel) 或无义突变,从机制上来说,预计这些突变不会对任何当前或未来的调节剂疗法产生反应。为了解决这一未满足的医疗需求,CF 领域努力研究基因添加和基因编辑方法(见表 1)。事实上,自从 HEMT 最常见的突变 F508del 以及门控和残留功能突变获得临床批准以来,药物难治性突变一直是研究的重中之重(见表 1)。 c.3718-2477C>T 是一种残留功能突变,携带此类突变的 pwCF 现在有资格获得美国批准的 CFTR 调节剂(https://www.fda.gov/)。6 在欧洲,只有携带突变与 F508del 等位基因结合的 pwCF 才有资格获得 Symkevi(tezacaftor/ivacaftor)
全面研究了 O 2 等离子体处理对 AlGaN/GaN 高电子迁移率晶体管 (HEMT) 动态性能的影响。漏极电流瞬态谱表明,经过 O 2 等离子体处理的 HEMT 的电流衰减过程大大减慢并得到缓解。在负栅极偏压应力下,通过 O 2 等离子体处理实现了 10.7 % 的电流崩塌和 0.16 V 的微小阈值电压漂移。此外,HEMT 的电流崩塌比与应力/恢复时间的关系表明,经过 O 2 等离子体处理的 HEMT 在各种开关条件下均具有优异的性能。特别是在高频开关事件中,电流崩塌比从约 50 % 降低到 0.2 %。最后,通过电容-频率测量证明了经过 O 2 等离子体处理的 AlGaN/金属界面的质量,界面陷阱密度 D 估计为 1.39 × 10 12 cm − 2 eV − 1 。这些结果表明,采用 O 2 等离子体处理的 GaN HEMT 是一种在功率开关应用中很有前途的技术。