我们非常高兴邀请您参加 Lengg 诊所瑞士癫痫中心的培训活动。今年的癫痫研究研讨会重点关注癫痫患者的术前评估。一方面,我们提出了新的诊断方法,另一方面,我们也重点介绍了颅内记录基础研究的工作。除了来自瑞士癫痫中心的演讲者外,我们还邀请了来自其他机构的知名专家。伯尔尼大学计算机科学研究所的 Athina T z ovara 教授展示了不同的时间尺度如何调节不同大脑区域的过程。丹麦奥胡斯大学的 Sándor Beniczky 教授介绍了电磁源定位,并展示了这种非侵入性方法如何支持术前患者的诊断。日内瓦大学的Serge Vulliémoz教授讲述了术前诊断的新发展,重点关注癫痫网络连接模式。我们很高兴邀请您参加一个内容丰富且主题鲜明的节目。
RaspberryPi 使用 Shield PiEEG 测量 EEG、ECG、EMG 和 EOG 本文介绍了用于通过单板计算机系列(RaspberryPi、OrangePi、BananaPi 等)读取信号的屏蔽 PiEEG 的硬件和软件。本文主要提供了如何实现该设备的技术信息。该设备旨在熟悉神经科学,是开始进行 EEG 测量的最简单方法之一。 Ildar Rakhmatulin,博士,PiEEG,ildarr2016@gmail.com 来源 https://github.com/Ildaron/EEGwithRaspberryPI 演示 https://youtu.be/uK8QF2liO5U 关键词:RaspberryPi 和 EEG、ECG、EMG 和 EOG;脑机接口;RaspberryPi 屏蔽 1. 简介 脑机接口是一种读取脑信号的设备,以识别可用于实际目的的任何相关性。 2021 年,我们开发了脑机接口 - ironbci [1,2,3],但芯片短缺大大增加了设备的成本,之后我们改用 PiEEG 屏蔽,这使得降低设备成本和简化安装过程成为可能。PiEEG 设备在会议 [4] 和出版物 [10] 中进行了一般性介绍。在本文中,我们将更多地关注该设备实现的技术细节。2. 安全建议开发的设备仅针对 Raspberry Pi 进行了测试。在测试期间,禁止将设备连接到电源,这是出于安全考虑并避免网络干扰。通过电网供电时不能使用此设备,并且只能在使用 5V 电池(容量不超过 2000 mAh)时使用它。图 1 是设备完整组装的概览。
颅内脑电图 (iEEG) 使我们能够以较高的空间和时间精度记录和调节人脑皮质和皮质下区域的宏观和微观神经元反应,与其他非侵入性成像和刺激技术相比,它具有显著的方法学优势。利用 iEEG 的这些技术优势,结合复杂的多元分析方法,研究人员对认知神经科学中许多长期存在的问题获得了前所未有的见解。本章旨在说明这些贡献,重点关注人类记忆。特别是,我们描述了 iEEG 如何增进我们对以下方面的理解:(1) 短期和长期记忆表征的动态和变革性质;(2) 海马高频神经活动,尤其是波纹活动在记忆形成、巩固和检索中的作用;(3) 海马和其他大脑区域中单个神经元活动的信息编码方案;以及 (4) 人类、灵长类动物和啮齿动物之间共同和不同的神经机制。此外,我们简要讨论了 iEEG 研究如何有助于开发最先进的脑机接口和闭环脑刺激。最后,我们总结了 iEEG 方法的优势和局限性,并提供了如何在 iEEG 和其他方法之间进行选择的实用指导。
Ildar Rakhmatulin* – 博士电子研究员 Sebastian Völkl – 脑机接口开发人员 摘要 本文介绍了可用于读取脑电图信号的 Raspberry Pi 系列单板计算机的开源软件和开发的屏蔽板。我们描述了读取脑电图信号并将其分解为傅里叶级数的机制,并提供了通过闪烁控制 LED 和玩具机器人的示例。最后,我们讨论了脑机接口在不久的将来的前景,并考虑了使用实时脑电图信号控制外部机械物体的各种方法。链接 来源 - https://github.com/Ildaron/EEGwithRaspberryPI/tree/master/Robot_control 网站 - https://www.hackerbci.com/ YouTube – https://youtu.be/wNgCEKIXGUY Slack - pieeg.slack.com *电子邮件:ildarr2016@gmail.com 许可证 - GNU 通用公共许可证 v3.0 关键词:PIEEG、hackerbci、RaspberryPi、EEG、脑机接口 缩写 BCI 脑机接口 EEG 脑电图 SBC 单板计算机 ADC 模拟数字转换器 介绍 提到 BCI 这个术语,许多人会立即联想到用思想的力量控制物体。现在,非侵入性脑电图测量的神经科学才刚刚开始。尽管如此,每一步都让我们更接近这个目标,并激励新一代科学家和工程师为这一科学领域做出贡献。我们有机器学习,它几年前才进入我们的生活,还有足够的计算能力来寻找脑电信号中的相关性。唯一的弱点是数据集的可用性。因此,我们希望有一种价格低廉的设备能让我们朝着解决这个问题迈出一步。读取脑电信号,尽管看似简单——用高精度 ADC 通过电极测量头皮上的微伏电压——却与各种科学领域有关。它涉及读取脑电信号 [1, 2022]、处理脑电信号 [2, 2021]、选择特征,最后将信号用于各种目的。此外,眨眼或咀嚼是不需要的伪影,会将有害的失真引入脑电信号,许多工作致力于对抗这些伪影 [3, 2022; 4, 2022]。然而,与此同时,这些伪影仍然常用于应用任务,例如对外部物体的眨眼控制。林等人。 [5,2010] 通过脑机接口成功通过眨眼控制了电动轮椅。Huang 等人 [6,2019] 开发了一款应用程序,通过眨眼和 BCI 来控制机器人轮椅的集成系统。我们的板子旨在让每个人都熟悉 EEG 的世界,包括那些与神经病学领域没有直接关系的人。所以,我们的使命是降低开始使用 BCI 的技术知识门槛。我们的目标不是与前面描述的论文竞争,而是展示我们的控制