癌症是全球仅次于心血管疾病的头号死亡原因,迫切需要新的策略来克服对现有癌症治疗的治疗耐药性。髓系抑制细胞 (MDSC) 是未成熟的髓系细胞,具有强大的免疫抑制能力,可对抗已证实的抗肿瘤效应物,例如自然杀伤细胞 (NK 细胞) 和 T 细胞,从而促进癌症的发生和发展。至关重要的是,MDSC 在几乎所有肿瘤类型和人类癌症患者中都很容易被识别,过去十年的大量研究已经认识到它们在对现代癌症治疗的所有四大支柱(即手术、化疗、放疗和免疫疗法)产生治疗耐药性方面发挥的作用。MDSC 通过多种机制抑制抗肿瘤免疫,包括已充分表征的精氨酸酶 1 (Arg1)、诱导型一氧化氮合酶 (iNOS) 和活性氧 (ROS) 介导的途径,以及其他几种最近发现的途径。 MDSC 在健康的稳态下基本不存在,主要存在于病理条件下,因此它们成为颇具吸引力的治疗靶点。然而,迄今为止缺乏针对 MDSC 的特异性标记,这极大地阻碍了治疗的发展,目前还没有临床批准的专门针对 MDSC 的药物。临床上消耗 MDSC 并抑制其免疫抑制功能的方法对于推进癌症治疗和克服治疗耐药性至关重要。本综述详细概述了目前对 MDSC 介导的抗肿瘤免疫抑制机制的理解,并讨论了针对 MDSC 免疫抑制机制以克服治疗耐药性的潜在策略。
摘要:背景:糖尿病的患病率在发展中和发展中的国家呈指数增长。糖尿病性肾病(DN)是全球终末期肾脏疾病(ESRD)的主要原因。研究的目的:这项工作旨在探讨雷诺嗪,伊法布拉丁和三唑胺在预防烟酰胺 - 抗蛋白酶 - 链霉亲素(NA-STZ)2型糖尿病大鼠模型中预防实验诱导的糖尿病性糖尿病肾病的发育和进展方面的潜在疗效。材料和方法:将30只大鼠分为:(第I组)正常对照组,(II组)未接受治疗的糖尿病组未接受治疗,(III组)雷诺嗪治疗的糖尿病患者接受了雷诺嗪(每天两次20 mg/kg)(每天两次20 mg/kg),(IV组)(IV组治疗的糖尿病研究小组ivabradine cote in ivabrim and iivabrad nim trim and/kg/kg/kg/kg/kg/kg/kg/kg/kg/kg/kg/kg/kg/kg/kg/kg/kg/kg/治疗的糖尿病患者接受了三甲酰胺(10 mg/kg/day)。结果:雷诺嗪,伊瓦布拉丁和三翼胺引起的肾脏匀浆中的空腹血糖,肾功能参数,肾功能参数,肾脏MDA和肾iinos显着降低。血清炎症标志物(RBP)也与血管损伤基因(ET-1)一起显着降低,与糖尿病非治疗大鼠相比,CASPase-3水平和TGFB-1中M RNA的显着下降调节被下调。结论:目前的发现证实了伊瓦布拉丁,三唑嗪和雷诺嗪对由Na-STZ T2DM诱导的DN的改善影响。ivabradine显示出最佳作用,其次是三唑胺。雷诺嗪治疗组的预防作用最低。
•了解软件系统的基本概念和概念,包括几个外国区域,感知可能的范围区域,并将知道学科的覆盖范围。(4.1)•将能够应用程序系统开发中数学,科学,工程,计算机科学的理论知识和算法原理。(4.2)•将能够抽象地思考,使用形式描述方法,证明其正确性,形式化并指定真实的世界问题。(4.3)•能够将计划系统应用于解决各个领域的任务的理论和实践,评估技术,经济,社会和法律背景。(6.1)•将能够选择和使用正确的现代方法,模型,解决问题的模板,技能和工具,用于开发和维护软件系统(包括新范围)。(6.2)•将能够使用现有的计算机和软件,识别,理解和应用有希望的技术。(6.3)(模块)研究方法评估方法将能够通过使用量子算法解决问题,了解KS构建方法,能够在编程和开源框架中实施它们来制定和应用新的量子算法,从而能够提出问题及其适应性。
对于晚期非小细胞肺癌 (NSCLC) 患者,与单独使用 PD-(L)1 抑制剂治疗相比,使用 CTLA4 抑制剂和 PD-1 或 PD-L1 抑制剂(下称 PD-(L)1 抑制剂)的双重免疫检查点阻断 (ICB) 具有更高的抗肿瘤活性和免疫相关毒性。然而,目前还没有经过验证的生物标志物来确定哪些患者会受益于双重 ICB 1,2 。我们在这里表明,在随机 III 期 POSEIDON 试验中,当将 PD-L1 抑制剂 durvalumab 和 CTLA4 抑制剂 tremelimumab 的双重 ICB 添加到化疗中时,患有 STK11 和/或 KEAP1 肿瘤抑制基因突变的 NSCLC 患者可从临床受益,但不能从单独使用 durvalumab 中受益 3 。公正的基因筛选发现,这两种肿瘤抑制基因的缺失是导致 PD-(L)1 抑制耐药的独立驱动因素,并表明 Keap1 的缺失是双重 ICB 疗效的最强基因组预测因子——这一发现在几种 Kras 驱动的 NSCLC 小鼠模型中得到证实。在小鼠模型和患者中,KEAP1 和 STK11 的改变都与不良的肿瘤微环境有关,其特征是抑制性髓系细胞占优势、CD8 + 细胞毒性 T 细胞耗竭,但 CD4 + 效应亚群相对保留。双重 ICB 强效作用于 CD4 + 效应细胞,并将肿瘤髓系细胞区室重新编程为表达诱导型一氧化氮合酶 (iNOS) 的杀瘤表型,其与 CD4 + 和 CD8 + T 细胞一起发挥抗肿瘤功效。这些数据支持使用双重 ICB 化学免疫疗法来减轻患有 STK11 和/或 KEAP1 改变的 NSCLC 患者对 PD-(L)1 抑制的耐药性。
钩端螺旋体是导致钩端螺旋体病的致病细菌,这是一种世界范围内的人畜共患病。所有脊椎动物都可以被感染,某些物种像人类易受疾病的影响,而小鼠等啮齿动物具有抗性并成为无症状的肾载体。诱导性是隐形细菌,已知可以逃避几种免疫识别途径并抵抗杀死机制。我们最近发表说,钩端螺旋体可以在细胞内生存并退出巨噬细胞,避免了Xenophapy,这是一种自噬的病原体靶向形式。有趣的是,后者是经常被细菌KAKE的抗菌机制之一,以逃避宿主的免疫反应。在这项研究中,我们探讨了钩端螺旋体是否颠覆了自噬的关键分子参与者以促进感染。我们在胶噬细胞中表明,钩端螺旋体触发了自噬适应器p62在类似点状结构中的特定积累,而不会改变自噬型号。我们证明了钩端螺旋体诱导的p62积聚是一种被动机制,具体取决于通过TLR4/TLR2信号传导的钩端螺旋力毒力因子LPS信号。p62是一种中央多效性蛋白,也通过转移因子的易位介导细胞应激和死亡。我们证明了瘦素驱动的p62的积累诱导了转录因子NRF2的易位,这是抗氧化剂反应中的关键参与者。然而,钩端螺旋体感染的NRF2易位并未像抗氧化反应中所预期的那样导致,但抑制了炎性介质的生产,例如Inos/NOOS/NO,TNF和IL6。©2023作者。总体而言,这些发现突出了一种与LPS和p62/NRF2信号相关的新型无源细菌机制,该机制减少了炎症并有助于诱导性的隐身性。由Elsevier Masson SAS代表Pasteur Inster出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
人类肠道菌群是一个复杂的社区,其中包括数百种物种,其中有5种具有很高的丰度,而绝大多数则在低丰度中。这些低丰富物种对其宿主的生物学功能和6个影响尚未完全了解。在这项研究中,我们7组装了一个由B. paravirosa,C。Come,M。Indica和A.8丁二根雄激素,它们是从健康的人类肠道中分离出的低丰度,短链脂肪酸(SCFA)的生产细菌9,并使用Germfree和Human 10 Microbiota相关结肠炎小鼠模型测试了其对宿主健康的影响。选择还有利于这四种细菌的溃疡性结肠炎(UC)或克罗恩病(CD)元素元素12个样本中有11种细菌。我们的发现表明,SC-4可以通过激活MUC-1和MUC-2基因来定位无菌(GF)小鼠,从而增加粘蛋白13的厚度,从而保护GF小鼠免受14硫酸钠(DSS)诱导的结肠炎的保护。SC-4在从DSS诱导的结肠炎中恢复了与人类微生物群相关的15只小鼠的协助下,其引人入胜的是,其给药增强了16个肠道微生物组的α多样性,使社区组成转移到更接近控制水平。结果表明,当将小鼠添加为二硫蛋白作为饮食中的18纤维源与SC-4给药时,所有措施中有17种增强的表型。我们还展示了19个肠道微生物组中存在的功能冗余,导致较低的SCFA生产商起作用为一种保险形式,进而在SC-4管理后加速了从失调状态的恢复。24sc-4 21定植也上调了iNOS基因表达,进一步支持其产生22个增加的杯状细胞的能力。总体而言,我们的结果提供了证据,表明肠道中有23种产生SCFA的物种可能为IBD提供了一种新型的治疗方法。
Akt¼蛋白激酶B; ALP¼碱性磷酸酶; a-sma¼a -smooth肌肉肌动蛋白; AMPK¼腺苷单磷酸 - 活化的蛋白激酶; ANP¼14钠肽; Arn¼血管紧张素受体Neprilysin抑制剂; AST¼天冬氨酸氨基转移酶; ATF-4¼激活转录因子4; BAX¼Bcl-2相关X蛋白; B-MHC¼B-肌球蛋白重链; bohb¼b-羟基丁酸酯; BNP¼B型纳特里尿肽; CAT¼过氧化氢酶; CFR¼冠状动脉储备; CK-MB¼肌酸激酶MB; CRS¼心脏综合征; CTNT¼心脏肌钙蛋白T;潮湿¼损伤相关的分子模式; dox¼阿霉素; ECG¼心电图; ef¼射血分数; EIF-2a¼真核生物起始因子2 a; Er¼内质网; ERK¼1.1.1/1/14; FGF¼FIMBLAST生长因子; FS¼部分缩短; g-csf¼1/1/14 GM-CSF¼1/1/1/14 GRP78¼葡萄糖调节的蛋白78; HTN¼高血压; I.P.¼腹膜内; IL¼白痴; IL¼白痴; IL¼白痴; iNOS¼诱导一氧化氮合酶; LDH¼14乳酸脱氢酶; LV¼左心室; lvedd¼左心室末端直径; lvesd¼左心室末端音直径; LVIDD¼左心内直径在末端末端;末端收缩处的LVIDS¼左心内直径; MDA¼MALONDIALLEDEDEDE; MMP¼基质金属肽酶; MPO¼髓过氧化物酶;雷帕霉素的mtor¼哺乳动物靶标; mybpc3¼结合蛋白C3; MyD88¼髓样差异反应88; NCD¼正常食物饮食; NF-kb¼核因子kappa-b; NLRP3¼NOD样受体蛋白3;无¼一氧化氮; NOX-1¼NADPH氧化酶1; NOX-2¼NADPH氧化酶2; NRF2¼核因子红细胞2 - 相关因子2; NT-Proanp¼n末端Pro - 心房纳地肽; NT-PROBNP¼N末端Pro - B型纳地尿肽; p38¼p38有丝分裂原激活的蛋白激酶; PARP¼聚(二磷酸腺苷 - 核糖)聚合酶; PERK¼蛋白激酶R样性内质网激酶; PGC¼过氧化物酶体增殖物 - 激活的受体共激活剂; PI3K¼磷酸肌醇3-激酶; PPAR¼过氧化物酶体增殖物 - 活化受体; QTC¼校正的QT; SIRT1¼SIRTUIN1; Sirt3¼Sirtuin3; Smad3¼母亲反对脱皮的同源物3; SOD¼超氧化物歧化酶; TGF¼转化生长因子; TLR9¼Toll样受体9; TNF¼肿瘤坏死因子; XO¼黄嘌呤氧化酶;其他缩写如表1所示。
益生菌近年来由于其潜在的健康益处及其在促进平衡的肠道微生物组中的作用而引起了显着关注。该主题旨在研究益生菌的应用及其对人类健康的广泛影响。20世纪见证了益生菌研究的重大转变,从科学家Elie Metchnikoff的开创性工作开始。他假设在发酵乳制品中通常发现的乳酸细菌的消耗可以通过调节肠道菌群来赋予健康受益。他的开创性思想为进一步的科学询问铺平了道路。最近,已经开发了创新方法来发现可能对人类和牲畜动物都有利益的菌株[1-3]。可以使用表型测试来评估被视为益生菌的菌株的必要特征,例如对胆汁盐的抗性,对氧化应激的细胞保护作用以及对病原体的抑制[4-7]。此外,似乎人工智能算法可以通过确定tRNA序列中的信息含量作为益生菌表征的关键基因组特征来识别新益生菌,并将其与人类肠道中的病原体区分开来[8]。此外,事实证明,转录组分析对于评估某些益生菌菌株(如rhamnosus rhamnosus scb0119)所表现出的潜在抗菌机制非常有价值[9]。益生菌最吸引人的方面之一是它们调节象征系统的潜力。cremoris和L. paracasei subsp。研究表明,某些益生菌菌株可以增强先天和适应性免疫反应。这种调节可能对从过敏到自身免疫性疾病的状况具有深远的影响,为治疗干预提供了有前途的途径。例如,用L. reuteri治疗可以调节肠道微生物组成并增强色氨酸代谢,从而导致芳基烃受体配体的产生,包括吲哚乳酸和吲哚 - 丙酸。这些配体激活AHR信号,有效地降低了异常的Th2型反应,并被证明是减轻特应性皮炎的有效替代方法[10]。此外,乳腺乳酸亚生成菌的热杀死混合物的给药。paracasei证明了免疫T细胞平衡的调节和带有家用尘螨提取物引起的特应性皮炎的小鼠的IgE产生的抑制,从而减少了相关症状[11]。几项研究表明,不仅细菌细胞本身,而且它们的上清液产物,还通过刺激巨噬细胞中的吞噬细胞来诱导免疫调节活性,从而增强免疫调节剂的表达,例如NO,TNF-Alpha,TNF-Alpha,IL-6,Inos和Cox-2 [12] [12]。此外,已经证明某些益生菌菌株能够在粘膜部位施加其免疫调节特性,包括生命和灭活时。例如,看来MBF蛋白与这些菌株诱导的免疫生物效应并不涉及,从而提供了相等的保护侵害症状[13]。益生菌在管理各种胃肠道疾病方面表现出了巨大的希望。诸如肠易激综合征,炎症性肠病等疾病,