IPB:一种系统的理解战场IPB的系统方法是一个连续的过程,涉及分析特定地理区域中的威胁和环境,以支持员工的估计和军事决策。 它由四个步骤组成,每次进行IPB时都会执行:定义战场环境,描述其效果,评估威胁并确定威胁的行动方案。 在进行操作之前,进行了IPB来确定战场的关键特征,例如地形,天气和后勤基础设施。 G2/S2识别这些特征,并建立了关注领域(AOI)的限制,以集中分析工作。 此步骤有助于集中命令的初始情报收集工作,并确保IPB流程的其余部分集中于重要领域。 G2/S2还确定了当前情报持有物中的空白,并与其他分支机构进行了协调,以开发填补这些空白的建议。 定义战场环境有助于确定需要特定情报的领域,这对于明智的决策至关重要。 IPB是一个连续的过程,涉及对威胁和环境的持续分析和评估。 只要产品在整个任务中得到指挥官的完成并为下一个操作做准备,该过程就必须有效。 智能过程首先确定命令的初始要求,这些要求是由环境和威胁情况塑造的。 这些模型用于决策和定位过程。IPB:一种系统的理解战场IPB的系统方法是一个连续的过程,涉及分析特定地理区域中的威胁和环境,以支持员工的估计和军事决策。它由四个步骤组成,每次进行IPB时都会执行:定义战场环境,描述其效果,评估威胁并确定威胁的行动方案。在进行操作之前,进行了IPB来确定战场的关键特征,例如地形,天气和后勤基础设施。G2/S2识别这些特征,并建立了关注领域(AOI)的限制,以集中分析工作。此步骤有助于集中命令的初始情报收集工作,并确保IPB流程的其余部分集中于重要领域。G2/S2还确定了当前情报持有物中的空白,并与其他分支机构进行了协调,以开发填补这些空白的建议。定义战场环境有助于确定需要特定情报的领域,这对于明智的决策至关重要。IPB是一个连续的过程,涉及对威胁和环境的持续分析和评估。只要产品在整个任务中得到指挥官的完成并为下一个操作做准备,该过程就必须有效。智能过程首先确定命令的初始要求,这些要求是由环境和威胁情况塑造的。这些模型用于决策和定位过程。第2步评估环境对友好和威胁力的影响,考虑到一般能力,地形,天气和地理位置。此评估重点介绍了整体情况,直到在此过程中稍后开发行动方案为止。分析包括对基础设施,人口统计,政治和当地人口的检查,及其对运营的影响。此步骤中的产品可能包括人口状态叠加,天气分析矩阵和集成产品(例如改良的组合障碍覆盖物)。步骤3涉及分析情报控股,以了解威胁通常如何组织战斗并在类似情况下进行操作。G2/S2使用历史数据并开发了威胁模型来描绘威胁的正常行为,通常通过图形模板,矩阵或简单的叙述来描绘。在面对新的或不太知名的威胁时,可能需要同时发展智能数据基础和威胁模型。在步骤4中,通过开发描述威胁可用选项的敌方行动模型,将上一步的结果集成到有意义的结论中。G2/S2还准备事件模板和矩阵,以将情报集的重点集中在识别威胁将执行的过程中。G2/S2无法有效地产生这些模型来预测威胁的行动方案,除非他充分分析了友好任务,并确定了物理限制,并考虑了所有可能影响整个过程中运营的环境特征。战场环境是综合生产过程(IPB)的关键方面,它指导美国陆军各个级别的决策。为了使IPB有效,它必须在前三个步骤中建立坚实的基础,以确保敌方COA模型有效且相关。虽然单位成员可以非正式地应用IPB,如步枪手对地形和天气的考虑所证明的那样,正式IPB需要更详细的分析,并生产有价值的产品,例如地形分析报告和威胁评估。随着单位大小的增加,IPB中所需的细节水平会显着扩展。部门工作人员可以生产诸如气候摘要,详细的威胁分析和COA模型之类的全面产品,而较小的单位只能对敌人的可能行动产生欣赏。G2/S2对命令级IPB负有主要责任,但是每个指挥官和工作人员都必须理解并应用IPB来支持决策。有效的IPB确定了有关战场和威胁的关键事实和假设,并告知员工计划和战争过程。指挥官和参谋长必须考虑环境因素如何影响友好和敌人的行动。为了履行其职责,每个官员都应准备与其功能领域相关的量身定制的IPB产品,例如电子战或工程。它涉及确定假设并分析敌人发展行动方案(COA)的能力。IPB过程包括五个步骤:任务分析,敌方COA,友好的COA,分析和比较COAS,并开发行动方案。IPB的重点转移到物流支持,增强污染策略IPB过程改进了敌方COA模型,告知NBC侦察支持计划的情报准备战场(IPB)过程是军事行动决策过程的至关重要组成部分。每个步骤都建立在上一个步骤上,最终结果是被整合到操作计划或订单中的选定COA。IPB流程是动态且连续的,需要持续适应战场上不断变化的情况。指挥官的初始规划指南为IPB流程设定了阶段,这有助于确定知识中的关键差距并确定情报要求。IPB过程的第一步是任务分析,工作人员评估了有关战场环境的事实,并假设友好和敌军的互动方式。此分析确定了对潜在友好COA的限制,并揭示了隐含的任务。第二步涉及评估敌人的能力和脆弱性,以告知友好的COA开发。在此步骤中开发的敌方COA模型为制定潜在友好的COA提供了基础。在行动阶段的发展过程中,工作人员使用IPB的结果来创建友好的COA,以利用环境和威胁情况提供的机会。分析和比较COAS步骤涉及在一场战斗会议上与敌人的COA进行“战斗”,以评估其有效性。智能估算中传达的IPB产品是此过程的重要元素。最后,在结论阶段,工作人员总结了战场环境对友好和敌方COA的影响,列出了可能的威胁COA,并确定了可剥削的脆弱性。在整个过程中,指挥官和员工都使用决策框架来选择COA并制定实现其实现的操作计划或订单。IPB流程针对潜在的友好COAS IPB流程涉及分析每个潜在的友好COA针对敌方COA模型,以识别支持友好COA的高付费目标(HPTS)。 这是通过战斗会议来实现的,该会议将选定的HVT精制成HPT。 定位过程需要特定的信息要求,指挥官通过在命令COA的每个阶段同步收集工作来计划。 如果需要BDA来支持COA,则收集计划会相应调整。 馆藏经理会在可能的情况下直接将目标智能从收集者到定位单元或相关的FSE进行直接传播。 提供可行的情报,IPB结构分析,使G2/S2能力向指挥官和消防人员提供指挥官执行轮胎支撑计划。 有关对目标过程的全面理解,请咨询FM 6-20-10。 收集管理协调组织和系统的活动,为指挥官提供COA和针对性努力的必要情报。 在IPB期间,指挥官根据任务分析过程中确定的关键差距确定了他的初始情报要求。 IPB在决策中起关键作用。IPB流程针对潜在的友好COAS IPB流程涉及分析每个潜在的友好COA针对敌方COA模型,以识别支持友好COA的高付费目标(HPTS)。这是通过战斗会议来实现的,该会议将选定的HVT精制成HPT。定位过程需要特定的信息要求,指挥官通过在命令COA的每个阶段同步收集工作来计划。如果需要BDA来支持COA,则收集计划会相应调整。馆藏经理会在可能的情况下直接将目标智能从收集者到定位单元或相关的FSE进行直接传播。提供可行的情报,IPB结构分析,使G2/S2能力向指挥官和消防人员提供指挥官执行轮胎支撑计划。有关对目标过程的全面理解,请咨询FM 6-20-10。收集管理协调组织和系统的活动,为指挥官提供COA和针对性努力的必要情报。在IPB期间,指挥官根据任务分析过程中确定的关键差距确定了他的初始情报要求。IPB在决策中起关键作用。员工战斗通过模拟敌方COA并确定每个决定所需的特定情报来完善这些要求。选择了友好的COA时,指挥官批准并优先考虑支持情报要求。IPB通过确定哪些活动满足每个要求以及预期发生的时间/时间来支持进一步的需求开发。事件模板查明NAI位置,而事件矩阵描述了相关的指示器和发生时间。这些工具构成了有效的情报收集计划的基础。此外,IPB有助于员工同步工具开发,例如DSTS和BOS同步矩阵(图1-4)。由此产生的ISM(图1-5)说明了COA支持的收集策略。有效的智能同步超出了单纯的系统操作;它涉及指导情报系统,处理信息,产生有价值的情报并及时传播它以支持指挥官决策。FM 34-2提供了有关智能同步和收集管理的详细讨论。IPB将G2/S2配备了用于快速评估传入信息和有效定位工作的工具。与命令的集成系统模型(ISM)和数据驱动策略(DST)有关,这有助于执行持续操作(COA)期间指挥官的决定,并实现迅速验证或否定COA开发过程中使用的假设。在参与期间,指挥官和员工监视DST和ISM反对即将到来的报告。当他们接近每个决策点(DP)时,他们会咨询G2/S2以支持情报以告知该决定。偶尔,这场战斗可能会以最初的计划,简报和游戏(IPB)和战争制定的意外方向发展。对手正在遵循他自己的时间表;因此,员工必须利用IPB,战争和智能同步作为动态工具而不是单一事件。随着行动的进展和敌人的意图,请根据需要重新启动IPB和决策过程。这需要关键工作人员从事“迷你沃格梅”或“ huddling”,以审查和完善初始的IPB。G2/S2然后进行战争制定,以根据最新的IPB预测确定最佳的友好响应或先发制人的措施。新的决策和COA会导致更新和完善收集计划,智能同步和新的决策支持工具。集成计划是智能周期的重要组成部分。IPB产品至关重要,因为它们会极大地影响员工计划工作。G2/S2利用IPB产品来处理系统智能系统(ISO)的大量信息。这些产品还使员工通过聚焦收集系统来利用现代ISO技术来利用现代的ISOS技术,从而提供了直接定位的近实时准确性。指挥官监督IPB的工作,而全体员工执行了这项工作。MI单位指挥官支持其命令的IPB,但也支持其在其控制下的ISOS资产来满足独特的计划要求。
全球范围内耐多药(MDR)细菌感染的增加迅速引起全球关注。本研究旨在探讨 25 株土壤放线菌菌株对 MDR 菌株包括大肠杆菌菌株 M4、铜绿假单胞菌菌株 M19、肺炎克雷伯菌菌株 M19、枯草芽孢杆菌菌株 M18 和耐甲氧西林金黄色葡萄球菌 (MRSA) 的抗菌和抗生物膜潜力。在本研究中,编码 APM-7、APM-11 和 APM-21 的三种放线菌分离株表现出强大而广泛的抗菌谱。从这些分离株中获得的提取物的最低抑菌浓度 (MIC) 范围为 78 μg/ml 至 10,000 μg/ml。此外,提取物还显示出显著的生物膜抑制值,范围从 6.06% 到 72.4%。结果显示,APM-21 提取物具有最佳的抗菌和抗生物膜活性,对 MRSA 的作用最强。根据 16S rRNA 基因的核苷酸测序,APM-7、APM-11 和 APM-21 菌株分别与蓝紫色链霉菌、蓝色链霉菌和帕纳氏链霉菌具有相似的特性。基于液相色谱串联质谱 (LC-MS/MS) 分析,在这三种提取物中均检测到两种抗菌化合物,即兰西曼霉素 III 和肠霉素。有趣的是,APM-21 提取物还含有两种突出的抗菌物质,包括对磁醌 C 和青霉素 I,表明它们对最潜在的活性做出了贡献。此外,这为用于控制 MDR 细菌菌株感染的活性化合物对抗策略的有希望的候选药物提供了新的见解。
摘要 转化是涉及基因组编辑的现代育种技术的关键步骤。体外组织培养和再生的要求阻碍了该技术应用于许多作物物种的具有商业重要性的品种。为了解决这个问题,我们开发了一种简单且可重复的小麦 (Tritticum aestivum L.) 植物内转化方法。我们的植物内粒子轰击 (iPB) 方法利用茎尖分生组织 (SAM) 作为靶组织。SAM 包含一个称为 L2 的表皮下细胞层,生殖细胞后来在花器官发生过程中从中发育而来。iPB 方法还可用于通过瞬时 CRISPR/Cas9 表达或直接递送 CRISPR/Cas9 核糖核蛋白进行基因组编辑。在这篇综述中,我们描述了 iPB 技术,并概述了其在植物转化和基因组编辑中的当前和未来应用。
“当科学家试图理解一个生命系统时,他们会从一个维度向下移动到另一个维度,从一个复杂程度向下移动到另一个复杂程度。我在自己的研究中也遵循了这一过程。我从解剖学到组织研究,然后到电子显微镜和化学,最后到量子力学。这种在维度尺度上向下的旅程具有讽刺意味,因为在我寻找生命秘密的过程中,我最终得到了原子和电子,而它们根本没有生命。不知从何时起,生命就从我的指尖溜走了。所以,在我年老的时候,我现在正在回溯我的脚步,试图重新振作起来”
需要完成来自新的高级品种的质量葱种子的发展,因为目前仅涵盖了大约10%的葱种子需求。然而,从本地品种(例如Bima Brebes品种)产生的真正葱种子(TSS)仍然很少开发,并且无法从TSS中产生许多分裂的灯泡。一种植物中的分裂灯泡的存在是消费者首选的,对青葱幼苗有益。这与农民每公斤获得的种子的种子数量有关。因此,这项研究旨在选择从TSS产生的种子产生分裂灯泡的葱。这项研究是在博戈热带园艺研究中心的Tajur实验农场进行的。幼苗在用透明塑料阴影的床上进行,可以打开和关闭。由TSS种子来源得出的Bima Brebes品种产生的分裂灯泡仍然相对较低,为39.69%,与比较品种显着不同,以超过60%以上。Sanren品种从TSS种子来源产生了分裂灯泡,高达64.13%,玛莎拉蒂品种约为61.25%。
由于需要考虑大量变量和约束,优化用于多个空间碎片收集和多个在轨服务的卫星路线可能是一个非常复杂的问题。需要考虑的因素包括轨道上碎片和服务目标的位置和移动、卫星的能力以及卫星燃料和电力使用的限制等。此外,由于需要考虑多个目标,例如在最大化碎片收集或服务覆盖范围的同时最小化燃料使用量,问题可能会变得更加复杂。解决这个问题的经典方法包括启发式和元启发式方法,如遗传算法、粒子群优化、蚁群优化和混合整数规划。在本文中,我们计划实现基于量子退火的卫星路线优化算法。这是一种可用于优化卫星路线的量子计算方法。量子退火背后的原理是利用量子力学效应来找到函数的全局最小值。在卫星路由的背景下,该函数将表示卫星沿特定路线行进所需的成本或能量。卫星的路线将由函数中的变量表示,量子退火器将使用量子力学效应来搜索能量最低的路线,这将对应于卫星要采取的最佳路径。我们计划使用 Ising 模型来实现卫星路由的量子退火。它可以用来将成本函数表示为一组通过成对相互作用相互作用的二元变量。变量之间的相互作用将表示路由问题的不同约束和目标,例如燃料使用和碎片收集。目标是找到最小化成本函数的变量配置,这对应于最佳卫星路线。将生成一个完整的数学模型,并基于所提出的技术进行数值分析。
简介/摘要 IPB Insurance CLG(“公司”或“IPB”)已编制此偿付能力财务状况报告(“SFCR”),以满足欧洲议会补充指令 2009/138/EC(称为偿付能力 II)的委员会授权条例 (EU) 2015/35 规定的公开披露要求,该指令自 2016 年 1 月 1 日起生效。本 SFCR 涵盖公司的业务和业绩、治理体系、风险状况、偿付能力评估和资本管理。所有这些事项的最终责任在于公司董事会,并得到各种治理和控制职能部门的支持,这些职能部门已建立起来以监控和管理业务运营。本 SFCR 经过了内部和外部审查和批准流程,包括根据 EIOPA 指南 37 获得的董事会批准,并受到控制以确保此处包含的信息可靠、完整并与提交给爱尔兰中央银行(“中央银行”)的信息和其他报告一致。
35 年来,生物科学家一直依赖广受好评的《分子生物学方法》系列中的研究方案和方法。该系列首次引入了分步方案方法,该方法已成为所有生物医学方案出版的标准。每个方案都以易于复制的分步方式提供,以介绍性概述开始,列出完成实验所需的材料和试剂,然后是详细的操作步骤,并附有有用的注释部分,提供行业提示和技巧以及故障排除建议。这些标志性功能由系列编辑 John Walker 博士引入,是《分子生物学方法》系列每一卷的关键要素。该系列的所有方案都经过测试和信任,全面可靠,已在 PubMed 中编入索引。
摘要。Nurhayati,Ardie SW,Santoso TJ,Sudarsono。2021。CRISPR/CAS9介导的基因组编辑,在水稻CV中。 IPB3S导致半昏迷的表型突变体。 生物多样性22:3792-3800。 IPB3S是印尼低地大米和高产品种。 但是,植物高度的姿势使其容易产生住宿,这可以降低产量。 这项研究旨在通过将CRISPR/CAS9 GA 20 OX2构建体引入IPB3s并开发半沃尔夫水稻突变体来编辑GA 20 OX2基因。 IPB3S的未成熟胚胎外植体用于由携带PC1300-CAS9/ GA 20 OX2的EHA105农杆菌菌株介导的转化过程,并通过更改再生培养基组成。 PCR分析表明,水稻CV。 IPB3S遗传转化获得了携带HPT基因的推定突变体T0线(生长效率为47.9%,而转化效率为19.3%)。 使用开发的再生培养基,我们获得了24种推定的水稻CV。 IPB3S T0突变线携带HPT。 再生IPB3S的最佳介质是A培养基(再生效率73.3%)。 IPB 8和IPB 14有可能在下一代评估。 在IPB 8-3突变体中观察到T1生成的最短植物高度。CRISPR/CAS9介导的基因组编辑,在水稻CV中。IPB3S导致半昏迷的表型突变体。 生物多样性22:3792-3800。 IPB3S是印尼低地大米和高产品种。 但是,植物高度的姿势使其容易产生住宿,这可以降低产量。 这项研究旨在通过将CRISPR/CAS9 GA 20 OX2构建体引入IPB3s并开发半沃尔夫水稻突变体来编辑GA 20 OX2基因。 IPB3S的未成熟胚胎外植体用于由携带PC1300-CAS9/ GA 20 OX2的EHA105农杆菌菌株介导的转化过程,并通过更改再生培养基组成。 PCR分析表明,水稻CV。 IPB3S遗传转化获得了携带HPT基因的推定突变体T0线(生长效率为47.9%,而转化效率为19.3%)。 使用开发的再生培养基,我们获得了24种推定的水稻CV。 IPB3S T0突变线携带HPT。 再生IPB3S的最佳介质是A培养基(再生效率73.3%)。 IPB 8和IPB 14有可能在下一代评估。 在IPB 8-3突变体中观察到T1生成的最短植物高度。IPB3S导致半昏迷的表型突变体。生物多样性22:3792-3800。IPB3S是印尼低地大米和高产品种。但是,植物高度的姿势使其容易产生住宿,这可以降低产量。这项研究旨在通过将CRISPR/CAS9 GA 20 OX2构建体引入IPB3s并开发半沃尔夫水稻突变体来编辑GA 20 OX2基因。IPB3S的未成熟胚胎外植体用于由携带PC1300-CAS9/ GA 20 OX2的EHA105农杆菌菌株介导的转化过程,并通过更改再生培养基组成。PCR分析表明,水稻CV。 IPB3S遗传转化获得了携带HPT基因的推定突变体T0线(生长效率为47.9%,而转化效率为19.3%)。 使用开发的再生培养基,我们获得了24种推定的水稻CV。 IPB3S T0突变线携带HPT。 再生IPB3S的最佳介质是A培养基(再生效率73.3%)。 IPB 8和IPB 14有可能在下一代评估。 在IPB 8-3突变体中观察到T1生成的最短植物高度。PCR分析表明,水稻CV。IPB3S遗传转化获得了携带HPT基因的推定突变体T0线(生长效率为47.9%,而转化效率为19.3%)。使用开发的再生培养基,我们获得了24种推定的水稻CV。IPB3S T0突变线携带HPT。 再生IPB3S的最佳介质是A培养基(再生效率73.3%)。 IPB 8和IPB 14有可能在下一代评估。 在IPB 8-3突变体中观察到T1生成的最短植物高度。IPB3S T0突变线携带HPT。再生IPB3S的最佳介质是A培养基(再生效率73.3%)。IPB 8和IPB 14有可能在下一代评估。在IPB 8-3突变体中观察到T1生成的最短植物高度。
• Pongruk Sribanditmongkol,清迈大学 (CMU) 校长 • Thomas Jeitschko,莫斯科州立大学教务长 • 朱岩,南京农业大学 (NAU) 副校长 • Arif Satria,IPB 大学校长