• BinHuraib, T.、Tuckute, G.、*Blauch, NM Topoformer:通过空间查询和重新加权在 Transformer 语言模型中实现类似大脑的地形组织。(2024 年)。国际学习表征会议 (ICLR),Re-Align 研讨会。*表示联合负责人和主要主管。• Vin, R.、Blauch, NM、Plaut, DC、Behrmann, M。视觉文字处理涉及分层、分布式和双边皮质网络。(2024 年)。iScience,27,108809。• Brookshire, G.、Kasper, J.、Blauch, NM、Wu, YC、Glatt, Ryan、Merrill, D.、Gerrol, S.、Yoder, KJ、Quirk, C.、Lucero, C。深度学习翻译脑电图研究中的数据泄漏。神经科学前沿。 • Ayzenberg, V.、Blauch, NM、Behrmann, M. 使用深度神经网络解决物体识别的方法 (2023)。PsyArxiv。对 TiCS 评论的反驳。• Blauch, NM Behrmann, M.、Plaut, DC 灵长类高级视觉皮层拓扑组织的连接约束计算说明 (2022)。美国国家科学院院刊,119 (3)。• Blauch, NM、Behrmann, M.、Plaut, DC 对人类陌生和熟悉面孔识别感知专业知识的计算洞察 (2021)。认知,208,104341。• Blauch, NM、Behrmann, M. Plaut, DC (2021)。熟悉和不熟悉面孔的共享感知表征的深度学习:对评论的回复。认知,208,104341。• Granovetter, M.、Burlingham, C.、Blauch, NM、Minshaw, C.、Heeger, D.、Behrmann, M. (2020) 不寻常的任务诱发瞳孔反应表明自闭症中存在不典型的蓝斑活动。神经科学杂志。• Blauch, NM、Behrmann, M. (2019)。以 3D 形式呈现面部。自然人类行为。评论。• Blauch, NM、Aminoff, E.、Tarr, MJ (2017)。功能局部化表示包含分布式信息:从深度卷积神经网络模拟中获得的见解。认知科学学会第 39 届年会论文集。
o Rogelj J.,Fransen T.,Alzen Mg。,Lamboll R.,Schumer C.,Kuramochi T.,Hans F.,Mooldijk S.,J。Portugal-Pereira,2023年。信誉;科学380(6649),1014-1doi:10 Polycarp,H.,B.,B.,Fernandes,Er。,Lau,F.,A。Suleman。2023。对策略进行策略将是可持续的航空。 P.,Bergman-Fonte,C.,Vincent,C.,Moras,T.,Carvalho,L.,Zanon-Zotin,M.,Szklo,A.2023。Slade,R,葡萄牙世界J.,Rogelj,J。2022。观察者的人工和社会模拟,24(3),1-9。doi:10,18564/jasss.4637。o Carvalho,F.,Muller-Casners,E.,葡萄牙 - 佩雷拉(J.2023。国际步进的约束力:美国对中国的约束。2022。2022。清洁剂生产信4,100028。https://doi.org/10.1016/j.clpl.2023.100028 The Winkler,H.,Lecocq,F.,Lofgren H.,Vilariño,Vilariño,M.V.转移发展途径的示例:有关如何启用更广泛,更深和气候行动的经验教训1,27。https://doi.org/10.1007/s44168-022-00026-1 The Muller-Casses,Muller-Casses,E.,E.,E.,Szklo Maia,P.,Rochedo,P.R.R。,Draeger,R.,R。Schaeffer。对巴西案的综合观点。ISCIAN 25,10,105248。
虚拟现实、迷幻药和机器人技术。认知神经科学实验室(Olaf Blanke:https://www.epfl.ch/labs/lnco)开设了一个新的博士职位,研究自我意识状态改变,特别是灵魂出窍体验(OBX),使用虚拟现实(VR)、机器人和人体运动平台等技术,结合迷幻药和高密度脑电图记录,揭示注意力和社交大脑机制对幻觉的影响。该项目是我们技术实验室主要研究工作的一部分,技术实验室是一种新的神经技术方法,用于诱导高度特异性和精细滴定的意识状态改变。项目描述:最近,对迷幻药(如裸盖菇素)引起的意识状态改变的研究重新兴起,包括自我意识状态改变(即自我消解)和治疗效果。布兰克实验室率先使用新技术,通过实验诱导自我意识改变状态、自我消解和相关精神状态,如灵魂出窍体验 (OBX),特别是脑刺激 (Blanke 等人,Nature 2002)、沉浸式虚拟现实 (Lenggenhager 等人,Science 2007;Aspell 等人,Psychological Science 2013;Noel 等人,Cognition 2015)、机器人技术 (Ionta 等人,Neuron 2011;Blanke 等人,Neuron 2015),以及运动平台上的前庭刺激 (Wu 等人,iScience 2024)。这种方法被称为技术节点,正如我们最近所指出的,与基于药理学的传统迷幻方法相比,它在研究自我意识改变状态方面具有多项优势(Bernasconi 等人,《自然协议》2022 年)。该博士项目旨在将迷幻药与技术节点相结合,通过在受控实验条件下研究精神药理学干预的效果,这些实验条件是通过沉浸在丰富的 VR 场景中,通过精确管理的机器人和/或前庭刺激来提供,从而诱导良好控制和细粒度的自我意识改变状态(OBX、自我消解和相关心理状态)。我们将开发新的行为(心理物理学、认知心理学)和神经测量(高密度脑电图)。我们还将研究通过机器学习和大型语言模型的技术创新来丰富该项目的可能性,例如通过集成我们最近开发的完全自动化的基于 AI 的聊天机器人面试系统。要求:理想候选人应拥有工程学、计算机科学、神经科学或心理学硕士学位(或同等学历),并对认知系统神经科学、神经成像和电生理学有浓厚兴趣。之前从事过虚拟现实开发和实验、应用机器学习和/或非侵入性脑刺激工作者优先。工作环境:成功申请者将加入由 Olaf Blanke 教授领导的 EPFL 认知神经假体学教授团队。该实验室是日内瓦蓬勃发展的神经科学社区的一部分,位于美丽的生物技术园区,
颅咽管瘤 (CP) 是一种罕见的脑肿瘤,发生在下丘脑和垂体附近的区域。颅咽管瘤会导致视力缺陷、神经元缺陷、糖尿病和发育问题等并发症。颅咽管瘤有两种主要亚型:釉质瘤性颅咽管瘤 (ACP) 和乳头状颅咽管瘤 (PCP)。这两种亚型以其独特的基因特征为特征。ACP 通常以 CTNNB1 基因突变为特征,而 PCP 主要与 BRAF 基因突变有关。治疗颅咽管瘤的主要方法是手术干预。然而,肿瘤的侵袭性及其靠近关键结构的位置对手术干预提出了重大挑战。随着肿瘤的进展,它会渗透到周围组织,导致严重的神经系统损伤。因此,单靠手术不足以解决颅咽管瘤带来的复杂挑战。为了成功切除肿瘤并保留周围健康组织,必须全面了解肿瘤的生物学特性和分子进展。在此背景下,田中智明教授与日本千叶大学医学院的樋口义则教授和河野隆史博士合作开展了一项研究,以阐明这种肿瘤所涉及的潜在生物学过程。该研究于2024年9月30日在线发布,并于2024年11月15日发表在iScience杂志第27卷第11期上。为此,他们利用单细胞RNA测序(一种揭示单个细胞间基因表达差异的技术)并分析了10例CP。在一次采访中,该研究的资深作者田中教授解释了其背后的动机。他说:“尽管这些肿瘤在组织学上是良性的,但它们会严重影响关键的大脑结构。” “我们的目标是开发更有针对性和侵入性更小的治疗方法,从而显著改善患者的治疗效果和生活质量。” 单细胞分析显示,肿瘤微环境 (TME) 内有多种细胞类型,包括肿瘤细胞、免疫细胞和成纤维细胞,不同病例的比例各不相同。肿瘤细胞分为两种主要亚型:1 型,在 ACP 中占主导地位,2 型,在 PCP 中占主导地位。ACP 和 PCP 亚型的单细胞基因表达数据被聚类以揭示肿瘤内不同的细胞类型。该研究确定了与 ACP 和 PCP 肿瘤中上皮细胞发育和免疫反应相关的细胞类型。然而,与肿瘤钙化有关的细胞类型在 ACP 中尤为普遍,而细胞周期相关基因在 PCP 类型中占主导地位。此外,研究团队发现两种肿瘤类型之间的巨噬细胞类型存在显著差异。促炎性M1巨噬细胞和炎症相关标志物在ACP中较高,而抗炎性M2巨噬细胞在PCP中较高。因此,M1和M2巨噬细胞比例较高与糖尿病和垂体功能不全的发生相关。
细菌免疫。Science。337 : 816-821, 2012。6)Gaj T, Gersbach CA, Barbas CF.: 基于ZFN、TALEN 和CRISPR/Cas 的基因组工程方法。Trends. Biotechnol. 31 : 397-405, 2013。7)Doudna JA, Charpentier E.: 基因组编辑。利用CRISPR-Cas9 进行基因组工程的新前沿。Science。346 : 1258096, 2014。8)Strecker J, Ladha A, Gardner Z 等:利用CRISPR 相关转座酶进行RNA 引导的DNA 插入。Science。 365 :48-53,2019。9)Klompe SE,Vo PLH,Halpin-Healy TS 等:转座子编码的 CRISPR-Cas 系统直接介导 RNA 引导的 DNA 整合。Nature。571 :219-225,2019。10)Jacobi AM,Rettig GR,Turk R 等:用于高效基因组编辑的简化 CRISPR 工具及其向哺乳动物细胞和小鼠受精卵中的精简协议。方法。121-122 :16-28,2017。11)Lino CA,Harper JC,Carney JP 等:CRISPR 的递送:挑战和方法综述。药物递送。 12)Kaneko T.:用于产生和维持有价值动物品系的生殖技术。J. Reprod. Dev. 64:209-215,2018。 13)Mizuno N,Mizutani E,Sato H等:通过腺相关病毒载体通过CRISPR/Cas9介导的基因组编辑实现胚胎内基因盒敲入。iScience。9:286-297,2018。 14)Yoon Y,Wang D,Tai PWL等:利用重组腺相关病毒在小鼠胚胎中精简体外和体内基因组编辑。Nat. Commun. 9 : 412, 2018。15)Takahashi G, Gurumurthy CB, Wada K, 等:GONAD:通过输卵管核酸递送系统进行基因组编辑:一种新型的小鼠微注射独立基因组工程方法。Sci. Rep. 5 : 11406, 2015。16)Sato M, Ohtsuka M, Nakamura S.:输卵管内滴注溶液作为在体内操纵植入前哺乳动物胚胎的有效途径。New Insights into Theriogenology, InTechOpen, London, 2018, pp 135-150。 17)Sato M,Takabayashi S,Akasaka E 等:基因组编辑试剂在小鼠生殖细胞、胚胎和胎儿体内靶向递送的最新进展和未来展望。Cells。9:799,2020。18)Alapati D,Zacharias WJ,Hartman HA 等:宫内基因编辑治疗单基因肺疾病。Sci. Transl. Med。11:eaav8375,2019。19)Nakamura S,Ishihara M,Ando N 等:基因组编辑成分经胎盘递送导致中期妊娠小鼠胎儿胚胎心肌细胞突变。IUBMB life。 20)Sato T, Sakuma T, Yokonishi T 等:利用 TALEN 和双切口 CRISPR/Cas9 在小鼠精原干细胞系中进行基因组编辑。Stem Cell Reports。5:75-82,2015。21)Wu Y, Zhou H, Fan X 等:通过 CRISPR-Cas9 介导的基因编辑纠正小鼠精原干细胞中的一种遗传疾病
尖峰蛋白致病性研究库Abdi A等人,“ SARS-COV-2与心肌细胞的生物相互作用:对心脏损伤和药物治疗的基本分子机制的见解。”药物。2022; 146:112518。 doi:10.1016/j.biopha.2021.112518 Aboudounya MM和RJ头,“ Covid-19和类似Toll的受体4(TLR4):SARS-COV-2可以结合并激活TLR4,以增加ACE2的表达,促进并促进并引起超in-inflammation。”介体插入式。2021; 2021:8874339。 doi:https://doi.org/10.1155/2021/8874339 Acevedo-Whitehouse K和R Bruno,“基于mRNA的疫苗疗法的潜在健康风险:一种假设:Med。假设2023,171:111015。doi:https://doi.org/10.1016/j.mehy.2023.111015 Ahn Wm等人,“ SARS-COV-2峰值蛋白会刺激鼠类和人类元群的大型型号的pkccase comcase tandy taimands comcase tangicants comcase tandys tandy ty24-NAdadphInds nodphicts tybccase。 2:175。doi:https://doi.org/10.3390/10.3390/antiox13020175 AIT-Belkacem I等,“ SARS-COV-2峰值蛋白会诱导双重性单核细胞激活,这可能会导致COVID 19的年龄偏见,” COVID 19的严重程度,”REP。2022,12:20824。doi:https://doi.org/10.1038/s41598- 022-25259-2 Aksenova ay等在Silico研究中提出的,” Int J Mol Sci。2022,23(21):13502。DOI:https://doi.org/10.3390/ijms232113502 Al-Kuraishy HM等人,“ SARS-COV-2感染患者的血液粘度的变化。”正面。Med。2022,9:876017。 doi:10.3389/fmed.2022.876017 al-Kuraishy HM等人,“ Covid-19中的溶血性贫血”。安。剧烈。Med。2022; 101:1887–1895。doi:10.1007/s00277-022-04907-7 Albornoz Ea等人,“ SARS-COV-2驱动NLRP3通过峰值蛋白中人类小胶质细胞中的nlrp3渗透性激活”,Mol。Psychiatr。(2023)28:2878–2893。doi:https://doi.org/10.1038/s41380-022-022-01831-0 Aleem A和Ahmed Nadeem,Coronavirus(Covid-19)疫苗(Covid-19)疫苗诱导的无症状血栓性血栓形成血栓形成血栓细胞(Vitt)(Vitt)(vitt)(vitt)(vaster niber Island),faster niber niber niber n eal eal elm:statpears elm:statpe elm:statpe e。 “ SARS-COV-2尖峰蛋白:发病机理,疫苗和潜在疗法”,感染49,第1期。5(2021年10月):855–876,doi:https://doi.org/10.1007/s15010-021-01677-8 Angeli Fet al。,“ Covid-19,Ace2和其他ACE2和其他血管紧张素酶的疫苗和表现。关闭“ Spike ecect”上的循环。” Eur J.实习生。2022; 103:23–28。doi:10.1016/j.ejim.2022.06.015 Angeli F等。2023年3月; 109:12-21。 doi:10.1016/j.ejim.2022.12.004 AO Z等人,“ SARS-COV-2 DELTA SPIKE蛋白增强了病毒式融合性和炎症性细胞因子的产生。” Iscience 2022,25,8:104759。DOI:10.1016/j.isci.2022.104759 Appelbaum K等人,“ SARS-COV-2 SPIKE-2 SPIKE依赖性血小板在COVID-19疫苗诱导的血小板诱导的血小板上的血小板激活中。”血液副词。2022 no。6:2250–2253。 doi:10.1182/bloodAdvances.2021005050506:2250–2253。doi:10.1182/bloodAdvances.202100505050
出版物 Liebing AD, Rabe P, Krumbholz P, Zieschang C, Bischof F, Schulz A, Billig S, Birkemeyer C, Pillaiyar T, Garcia-Marcos M, Kraft R, Stäubert C (2025) 琥珀酸受体 1 信号转导相互依赖于亚细胞定位和细胞代谢。 FEBS J doi:10.1111/febs.17407 Röthe J, Kraft R , Ricken A, Kaczmarek I, Matz-Soja M, Winter K, Dietzsch AN, Buchold J, Ludwig MG, Liebscher I, Schöneberg T, Thor D (2024) 小鼠粘附 GPCR GPR116/ADGRF5 在胰岛调节中具有双重功能生长抑素释放和胰岛发育。共同生物学7:104。 Kaczmarek I、Wower I、Ettig K、Kuhn C、Kraft R、Landgraf K、Körner A、Schöneberg T、Horn S、Thor D (2023) 使用创新的 RNA-seq 数据库 FATTLAS 识别参与脂肪组织功能的 GPCR。iScience 26:107841。Peters A、Rabe P、Liebing AD、Krumbholz P、Nordström A、Jäger E、Kraft R、Stäubert C (2022) 羟基羧酸受体 3 和 GPR84 – 两种在先天免疫细胞中具有相反功能的代谢物感应 G 蛋白偶联受体。Pharmacol Res 176:106047。 Rabe P、Liebing AD、Krumbholz P、Kraft R、Stäubert C (2022) 琥珀酸受体 1 抑制对谷氨酰胺上瘾的癌细胞的线粒体呼吸。Cancer Lett 526:91-102。Peters A、Rabe P、Krumbholz P、Kalwa H、Kraft R、Schöneberg T、Stäubert C (2020) 羟基羧酸受体 3 和 G 蛋白偶联受体 84 的自然偏向信号传导。Cell Commun Signal 18:31。Röthe J、Kraft R、Schöneberg T、Thor D (2020) 探索原发性胰腺胰岛中的 G 蛋白偶联受体信号传导。Biol Proced Online 22:4。 Stegner D, Hofmann S, Schuhmann MK, Kraft P, Herrmann AM, Popp S, Höhn M, Popp M, Klaus V, Post A, Kleinschnitz C, Braun A, Meuth SG, Lesch KP, Stoll G, Kraft* R , Nieswandt* B (2019) Orai2 介导的电容性 Ca 2+ 条目的丢失具有神经保护作用急性缺血性中风。笔画 50:3238-3245。 Röthe* J、Thor* D、Winkler J、Knierim AB、Binder C、Huth S、Kraft R、Rothemund S、Schöneberg T、Prömel S (2019) 粘附 GPCR 卵白蛋白参与调节胰岛素释放。 Cell Rep 26:1573-1584。Kraft R (2015) 神经系统中的 STIM 和 ORAI 蛋白。Channels (Austin) 9:235-243。Michaelis M、Nieswandt B、Stegner D、Eilers J、Kraft R (2015) STIM1、STIM2 和 Orai1 调节钙池操纵的钙内流和小胶质细胞的嘌呤能激活。Glia 63:652-663。Kallendrusch S、Kremzow S、Nowicki M、Grabiec U、Winkelmann R、Benz A、Kraft R、Bechmann I、Dehghani F、Koch M (2013) G 蛋白偶联受体 55 配体 L-α-溶血磷脂酰肌醇在兴奋毒性损伤后发挥小胶质细胞依赖性神经保护作用。 Glia 61:1822-1831。Wegner F、Kraft R、Busse K、Härtig W、Leffler A、Dengler R、Schwarz J(2012 年)分化的人类中脑衍生神经祖细胞表达含有 α2β 亚基的兴奋性士的宁敏感甘氨酸受体。PLoS One 7:e36946。
Ravin,St.S.,Reik,A.,Liu,P.Q.,Li,L.,Wu,X,X,South,L。和Al。 (2016)。 具有灾难粒状编年史的人类中的靶标添加。 nat。 生物技术 34,424–429。 10.1038/nbt。 (2016)。 crispr/cas9在人和干细胞中的β-珠蛋白基因。 自然539,384–389。 doi:10.1038/nature2 (2017)。 基因治疗者在CD34( +)后代和患者贫血中编辑。 贝尔摩尔。 但是。 9,1574–1588。 doi:10.15252/母亲20170750 Eyquem,J.,Mansilla-Soto,J (2017)。 自然543,113–117。 doi:10.1038/nature2 (2014)。 基因组基因组和人类重生和干细胞。 自然510,235–240。 doi:10.1038/自然 (2019)。 人类基因组编辑的造血刺激炎性疾病的细胞。 nat。 公社。 ISCIENCE 12,369–3Ravin,St.S.,Reik,A.,Liu,P.Q.,Li,L.,Wu,X,X,South,L。和Al。(2016)。具有灾难粒状编年史的人类中的靶标添加。nat。生物技术34,424–429。10.1038/nbt。(2016)。crispr/cas9在人和干细胞中的β-珠蛋白基因。自然539,384–389。doi:10.1038/nature2(2017)。基因治疗者在CD34( +)后代和患者贫血中编辑。贝尔摩尔。但是。9,1574–1588。doi:10.15252/母亲20170750 Eyquem,J.,Mansilla-Soto,J(2017)。自然543,113–117。doi:10.1038/nature2(2014)。基因组基因组和人类重生和干细胞。自然510,235–240。doi:10.1038/自然(2019)。人类基因组编辑的造血刺激炎性疾病的细胞。nat。公社。ISCIENCE 12,369–3ISCIENCE 12,369–310:4045。 doi:10.1038/s41467-019-11962-8 Greiner,V.,Bou Puerto,R.,Liu,S.,Herbel,C.,Carmona,E。M.和Goldberg,M.S。(2019)。CRISPR介导的B细胞受体在原代人B细胞中的编辑。 doi:10.1016/j.isci.2019.01.032 Hartweger,H.,McGuire,A.T.,Horning,M.,Taylor,J.J.,Dosenovic,P.,Yost P.,Yost,D。等。 (2019)。 HIV特定的体液免疫反应由CRISPR/CAS9编辑的B细胞。 J. Exp。 Med。 216,1301–1310。 doi:10.1084/jem.20190287 Hubbard,N.,Hagin,D.,Sommer,K.,Song,Y.,Khan,I.,Clough,C。等。 (2016)。 靶向基因编辑可恢复X连锁超级IGM综合征中调节的CD40L功能。 血液127,2513–2522。 doi:10.1182/Blood-2015-11-683235 Kuo,C.Y.,Long,J.D.,Campo-Fernandez,B.,De Oliveira,S.,Cooper,A.R.,Romero,Z。等。 (2018)。 部位特异性基因编辑人类造血干细胞的X连锁性高IGM综合征。 细胞代表。 23,2606–2616。 doi:10.1016/j.celrep.2018.04.103 Laoharawee,K.,Dekelver,R.C.,Podetz-Pedersen,K.M.,Rohde,M.,Sproul,S.,Nguyen,H.O。等。 (2018)。 通过ZFN介导的体内基因组编辑中的鼠MPS II中代谢和神经疾病的剂量依赖性预防。 mol。 ther。 26,1127–1136。 doi:10.1016/j.ymthe.2018.03.002 Li,H.,Haurigot,V.,Doyon,Y.,Li,T.,Wong,S.Y.,Bhagwat,A.S。等。 (2011)。 体内基因组编辑在血友病的小鼠模型中恢复止血。 自然475,217–221。 (2007)。 nat。CRISPR介导的B细胞受体在原代人B细胞中的编辑。doi:10.1016/j.isci.2019.01.032 Hartweger,H.,McGuire,A.T.,Horning,M.,Taylor,J.J.,Dosenovic,P.,Yost P.,Yost,D。等。(2019)。HIV特定的体液免疫反应由CRISPR/CAS9编辑的B细胞。 J. Exp。 Med。 216,1301–1310。 doi:10.1084/jem.20190287 Hubbard,N.,Hagin,D.,Sommer,K.,Song,Y.,Khan,I.,Clough,C。等。 (2016)。 靶向基因编辑可恢复X连锁超级IGM综合征中调节的CD40L功能。 血液127,2513–2522。 doi:10.1182/Blood-2015-11-683235 Kuo,C.Y.,Long,J.D.,Campo-Fernandez,B.,De Oliveira,S.,Cooper,A.R.,Romero,Z。等。 (2018)。 部位特异性基因编辑人类造血干细胞的X连锁性高IGM综合征。 细胞代表。 23,2606–2616。 doi:10.1016/j.celrep.2018.04.103 Laoharawee,K.,Dekelver,R.C.,Podetz-Pedersen,K.M.,Rohde,M.,Sproul,S.,Nguyen,H.O。等。 (2018)。 通过ZFN介导的体内基因组编辑中的鼠MPS II中代谢和神经疾病的剂量依赖性预防。 mol。 ther。 26,1127–1136。 doi:10.1016/j.ymthe.2018.03.002 Li,H.,Haurigot,V.,Doyon,Y.,Li,T.,Wong,S.Y.,Bhagwat,A.S。等。 (2011)。 体内基因组编辑在血友病的小鼠模型中恢复止血。 自然475,217–221。 (2007)。 nat。HIV特定的体液免疫反应由CRISPR/CAS9编辑的B细胞。J. Exp。Med。216,1301–1310。doi:10.1084/jem.20190287 Hubbard,N.,Hagin,D.,Sommer,K.,Song,Y.,Khan,I.,Clough,C。等。(2016)。靶向基因编辑可恢复X连锁超级IGM综合征中调节的CD40L功能。血液127,2513–2522。doi:10.1182/Blood-2015-11-683235 Kuo,C.Y.,Long,J.D.,Campo-Fernandez,B.,De Oliveira,S.,Cooper,A.R.,Romero,Z。等。(2018)。部位特异性基因编辑人类造血干细胞的X连锁性高IGM综合征。细胞代表。23,2606–2616。doi:10.1016/j.celrep.2018.04.103 Laoharawee,K.,Dekelver,R.C.,Podetz-Pedersen,K.M.,Rohde,M.,Sproul,S.,Nguyen,H.O。等。(2018)。通过ZFN介导的体内基因组编辑中的鼠MPS II中代谢和神经疾病的剂量依赖性预防。mol。ther。26,1127–1136。doi:10.1016/j.ymthe.2018.03.002 Li,H.,Haurigot,V.,Doyon,Y.,Li,T.,Wong,S.Y.,Bhagwat,A.S。等。(2011)。体内基因组编辑在血友病的小鼠模型中恢复止血。自然475,217–221。(2007)。nat。doi:10.1038/nature10177伦巴多(A.使用锌纤维核酸酶和整合酶缺陷式慢病毒载体递送中的人类干细胞中的基因编辑。生物技术。25,1298–1306。doi:10.1038/nbt1353 Macleod,D.T.,Antony,J.,Martin,A.J.,Moser,R.J.,Hekele,A.,Wetzel,K.J.等。(2017)。将CD19汽车的整合到TCRα链基因座中,简化了同种异体基因编辑的CAR T细胞的产生。mol。ther。25,949–961。 doi:10.1016/j.ymthe.2017.02.005 Mo i Q. (2019)。 B细胞设计用于表达病原体特异性抗体防止感染的细胞。 SCI。 免疫。 4:AAX0644。 doi:10.1126/sciimmunol.aax0644 Ou,L.,Dekelver,R.C.,Rohde,M.,Tom,S.,Radeke,R.,St Martin,S.J。等。 (2019)。 ZFN介导的体内基因组编辑纠正了鼠hurler综合征。 mol。 ther。 27,178–187。 doi:10.1016/j.ymthe.2018.10.018 OU,L.,Przybilla,M.J.,Ahlat,O. (2020)。 高度有效的PS基因编辑系统纠正了I. mol的粘多糖含量的代谢和神经系统并发症。 ther。 28,1442–1454。 doi:10.1016/j.ymthe.2020.03.018 Rai,R.,Romito,M.,Rivers,E.,Turchiano,G.,Blattner,G.,G.,Vetharoy,W。等。 (2020)。 nat。 社区。25,949–961。doi:10.1016/j.ymthe.2017.02.005 Mo i Q.(2019)。B细胞设计用于表达病原体特异性抗体防止感染的细胞。SCI。 免疫。 4:AAX0644。 doi:10.1126/sciimmunol.aax0644 Ou,L.,Dekelver,R.C.,Rohde,M.,Tom,S.,Radeke,R.,St Martin,S.J。等。 (2019)。 ZFN介导的体内基因组编辑纠正了鼠hurler综合征。 mol。 ther。 27,178–187。 doi:10.1016/j.ymthe.2018.10.018 OU,L.,Przybilla,M.J.,Ahlat,O. (2020)。 高度有效的PS基因编辑系统纠正了I. mol的粘多糖含量的代谢和神经系统并发症。 ther。 28,1442–1454。 doi:10.1016/j.ymthe.2020.03.018 Rai,R.,Romito,M.,Rivers,E.,Turchiano,G.,Blattner,G.,G.,Vetharoy,W。等。 (2020)。 nat。 社区。SCI。免疫。4:AAX0644。doi:10.1126/sciimmunol.aax0644 Ou,L.,Dekelver,R.C.,Rohde,M.,Tom,S.,Radeke,R.,St Martin,S.J。等。(2019)。ZFN介导的体内基因组编辑纠正了鼠hurler综合征。mol。ther。27,178–187。doi:10.1016/j.ymthe.2018.10.018 OU,L.,Przybilla,M.J.,Ahlat,O.(2020)。高度有效的PS基因编辑系统纠正了I. mol的粘多糖含量的代谢和神经系统并发症。ther。28,1442–1454。doi:10.1016/j.ymthe.2020.03.018 Rai,R.,Romito,M.,Rivers,E.,Turchiano,G.,Blattner,G.,G.,Vetharoy,W。等。(2020)。nat。社区。针对人类造血干细胞的靶向基因校正,以治疗Wiskott -Aldrich综合征。11:4034。 doi:10.1038/s41467-020-17626-2 Scharenberg,S.G.,Poletto,E.,Lucot,K.L.,Colella,P.,Sheikali,A.(2020)。工程单核细胞/巨噬细胞特异性葡萄糖脑苷酶