未来方法的一个关键要素是针对中型和大型建筑项目制定单独的现场废物管理计划。岛屿发展计划要求制定这些计划,详细说明如何管理废物,包括减少废物的措施以及在项目内重复使用或回收材料。这将有助于获取数据以量化有多少材料被转移免于处置,并确定正在实施的废物预防措施。在采用该战略后,应在数据收集三年后实施层次结构中每一层的目标。
向净零排放世界过渡是人类面临的最大挑战之一。能源行业是温室气体排放的最大来源之一,是避免气候变化最严重影响的关键。然而,当今的储能设备受到其组成材料性能的限制。克服这些限制需要更深入地了解材料的物理和化学性质。如果材料对空气/湿度敏感,材料研究将变得更具挑战性。
热失控后,重点应放在限制范围并最大程度地减少损坏。激活惰性气体系统可以控制该过程,因为电池的能量在放电过程中自然减少。要引入的确切时机和数量取决于房间的尺寸,电池容量,电池密度,房间特征等。如果需要在长时间内需要进行热失控的缓解措施,则可以安装连续的氧气内泥浆系统。连续氧化系统补充了标准惰性气体系统,并具有额外的内加气缸,其放电时间较长。这会在房间中保持过压力,排气气,并抑制潜在的火灾。
摘要:在药物开发的早期阶段,通常会筛选大型化学文库,以识别针对所选靶标具有有希望的效力的化合物。通常,所得的命中化合物往往具有较差的药物代谢和药代动力学(DMPK),具有负面的可开发性特征可能难以消除。因此,使用“无效库”开始药物发现过程,具有高度理想的DMPK特性但对所选目标没有效力的化合物可能是有利的。在这里,我们探索了机器学习提供的机会,以实现这种策略,以抑制α-苏核蛋白聚集,这是与帕金森氏病有关的过程。我们将一种生成机器学习方法MoldQN构建对α-突触核蛋白聚集的抑制活性,为具有良好DMPK特性的初始非活性化合物。我们的结果说明了如何使用生成建模最初赋予具有理想的开发性属性的化合物。■简介
摘要:在热失控(TR)期间,锂离子电池(LIBS)产生大量气体,当电池故障并随后燃烧或爆炸时,电动汽车和电化学能源存储系统可能会造成不可想象的灾难。因此,要系统地分析具有Lifepo 4(LFP)和Lini X Co Y Mn Z O 2(NCM)阴极材料的常用LIB的热后失控特性,并在电池热逃亡过程中最大程度地发挥了原位气体,我们在电池热失控过程中最大程度地发电了实验,则使用Adiabatic Explotic爆炸室(AEC)(AEC)测试libes libs libs libs libs libs libs libs。此外,我们对热失控过程中产生的气体成分进行了原位分析。我们的研究发现表明,在热失控之后,NCM电池比LFP电池产生的气体更多。基于电池气体的产生,TR造成的伤害程度可以排名如下:NCM9 0.5 0.5> NCM811> NCM622> NCM523> NCM523> LFP。NCM和LFP电池的热失控期间的主要气体组件包括H 2,CO,CO 2,C 2 H 4和CH 4。LFP电池产生的气体包含h 2的高比例。与NCM电池产生的混合气体相比,LFP电池在TR期间产生的LFP电池产生的气体的高浓度较低。因此,就电池TR气体组成而言,危险水平的顺序为LFP> NCM811> NCM622> NCM523> NCM9> NCM9 0.5 0.5 0.5 0.5 0.5。尽管LFP电池非常安全,但我们的研究结果再次引起了研究人员对LFP电池的关注。尽管实验结果表明,在大规模电池热失控事件中,LFP电池具有较高的热稳定性和较低的气体产生,考虑到气体产生成分和热失控产品,但LFP电池的热失控风险可能高于NCM电池。这些气体还可以用作电池热失控警告的检测信号,为未来电化学能源存储和可再生能源行业的未来开发提供了警告。
I.引言国家航空航天管理局(NASA)的游戏改变开发项目(GCD)羽流相互作用(PSI)项目[1]旨在发展代理在预测PSI行为方面的能力。这包括关注计算流体动力学(CFD)模拟中利用模型的成熟[2]。这些CFD工具的验证和验证需要一组强大的数据,该数据表征与PSI相关的各种不同的物理行为。为此,PSI项目已开展了一个新的地面测试活动,称为物理浓缩距离测试(PFGT)[3]。PFGT是作为一个实验测试床开发的,其总体目标是生成对PSI相关物理学的计算流体动力学验证所需的数据[2,4-7]。PFGT的主要数据目标
4。Promotion of use of Green Technologies like: • Steel slag in base & sub-base layer • Cement treated sub base • Reclaimed asphalt • Inert material for landfill • Industrial Waste (Phosphor-gypsum) • Construction & Demolition waste • Alternate material like stones, gravels and municipal waste • Waste Plastic
• Absorbance of active components, by having a fully inert sample path • Interferences from air with specially designed valve enclosures purged with Helium carrier gas to prevent air diffusion and improve detection limits • Low concentration measurement with high sensitivity detectors like HID & SCD • Issues due to co-elution's of HC components with sulphur components are overcome by using an SCD over PFPD, where the SCD具有较高的选择性,更好的线性性和在SCD的前几代的稳定性提高
• In the first GC columns, the “liquid phase” was coated onto an inert support (firebrick and then diatomataceous earth – the silica shells of sea creatures) • However, these particles create a significant back pressure, limiting the (glass) column lengths to 2 meters • The disadvantage of using a gas as the mobile phase is that it is compressible • For a 2‐meter column, the head gas pressure is twice atmospheric • This slows linear气速和降低分离能力•毛细管柱,将液体覆盖到该色谱柱壁上的毛细管柱在1955年获得专利,但直到1975年才商业化•第一毛细管为硼硅酸盐玻璃 - 很容易折断•柱状长度•最高100米的圆柱长度•纤维上的石英毛细管
手套箱是最近在工程领域用于制造高级材料的工具,这需要严格的环境控制以进行处理。手套箱使处理和处理危险和反应性材料成为可能。像plotonium这样的放射性材料专门在手套箱中处理,用于燃料制造和涉及燃料重新处理的过程[1]。手套箱的主要商业应用之一是在制造锂离子电池中使用。用于制造电池的手套箱在高度严格的状态下操作,其中氧气和水分保持在低于1 ppm的状态[2]。手套箱在处理反应材料时清除惰性气体(如氩气和氮),将其保持在惰性气氛中[2]。手套箱还保持着轻微的正压,以防止进入大气气体。橡胶手套倾向于渗透气体,因此需要正压[3]。手套箱通过通过再生系统循环惰性气体来实现高水平的纯度[4]。在再生系统中,惰性气体通过铜等加热的Getter材料传递。