抽象动机:在生物信息学的计算机实验中,涉及计算工具和信息回购的协调使用。以Web服务的形式提供了越来越多的这些资源,并提供了程序化访问。生物信息学科学家将需要在工作流中协调这些网络服务,作为其分析的一部分。结果:Taverna项目开发了一种工具,用于为生命科学社区的生物信息学工作构成和制定。该工具包括一个工作台应用程序,该应用程序提供了用于工作流量组成的图形用户界面。这些工作流是用一种新语言编写的,称为简单的概念统一流量语言(SCU lof),其中在工作流程中的每个步骤都遵循一个原子任务。使用两个示例来说明在计算机实验中可以使用工作台应用程序将其表示为SCU浮动流量的便捷性。可用性:Taverna Work流量系统可作为开源可用,可以从http://taverna.sourceforge.net contact:taverna-users@lists.sourceforge.sourceforge.net
立场摘要Ifakara Health Institute(IHI)与卫生部通过国家疟疾控制计划,总统办公室,地区管理局和地方政府以及国家医学研究所(NIMR)共同实施了Malararia Malararia在Tanzania内部(MSMT2)项目的第二阶段。同时,IHI正在寻求一名精力充沛,熟练的后博士后研究员,以加入我们的团队,进行一项尖端的研究项目,专注于MSMT项目的第二阶段。成功的候选人将与多学科研究人员,公共卫生专业人员以及本地和国际利益相关者紧密合作,以增强和规模,以增强和扩展本地能力,以基于该项目的目标,以支持分子,遗传,基因组和数据分析,以支持疟疾分子监测和其他要求。该项目最终将支持政策变化,并为坦桑尼亚的疟疾控制和消除提供明智的决策。
近年来,天然纤维增强复合材料由于其质量轻、耐磨、可燃、无毒、成本低和可生物降解等特性而受到广泛关注。在各种天然纤维中,亚麻、竹、剑麻、大麻、苎麻、黄麻和木纤维尤其受到关注。世界各地对利用天然纤维作为增强材料来制备各种类型复合材料进行了大量研究。然而,缺乏良好的界面黏附力、熔点低和耐湿性差使得天然纤维增强复合材料的使用不那么有吸引力。天然纤维的预处理可以清洁纤维表面、对表面进行化学改性、停止吸湿过程并增加表面粗糙度。在各种预处理技术中,接枝共聚和等离子处理是天然纤维表面改性的最佳方法。天然纤维与乙烯基单体的接枝共聚物可在基质和纤维之间提供更好的粘合性。本文回顾了预处理天然纤维在聚合物基质复合材料中的应用。还讨论了天然纤维表面改性对纤维和纤维增强聚合物复合材料性能的影响。POLYM. ENG. SCI.,49:1253–1272,2009 年。ª 2009 年塑料工程师协会
本文提出了一套新的缩放定律,用于研究轻质钢筋混凝土隧道衬砌在 1g 振动台试验中的开裂后行为。开裂后行为缩放定律使用两个无量纲参数制定:脆性数 s ,它控制非钢筋混凝土构件的断裂现象;NP ,它对钢筋混凝土构件中混凝土断裂过程和钢塑性流动的稳定性起主要作用。提出的定律允许开发“充分”的实验模型,并使用原型和 1:30 模型比例的岩石钢筋隧道的数值分析进行验证。采用的实验装置的灵感来自现有的 1g 物理测试活动,该测试活动针对岩石混凝土隧道的地震响应,并且假设的定律表明在两个检查的地震记录下,模型和原型隧道的开裂行为具有令人满意的相似性。强调了在 1g 测试中使用提出的定律对钢筋混凝土隧道中不断发展的裂缝模式进行 A 级预测的潜力。在三种可能的边界条件下对所提出的定律进行了检验,结果表明,与设想的自由场边界模型相比,刚性箱和层流箱仍然可以显著改变行为。但分析表明,对于较大的土壤与衬砌刚度比,边界伪影可以大大减少。本研究为迄今为止尚不存在的未来 1g 测试提供了有用的建议,而所提出的缩放定律允许在设计新型隧道衬砌模型测试材料时具有多功能性。
Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity Fei Duan 1 , Jorge Duitama 2 , Sahar Al Seesi 2 , Cory M. Ayres 3 , Steven A. Corcelli 3 , Arpita P. Pawashe 1 , Tatiana Blanchard 1 , David McMahon 1 , John Sidney 4 , Alessandro Sette 4 , Brian M. Baker 3,I. Mandoiu 2和Pramod K. Srivastava 1 1 1 1免疫学和Carole和Ray Neag Neag Neag综合癌症中心,康涅狄格大学医学院,法明顿大学,CT 06030 2计算机科学与工程系,康涅狄格大学,康涅狄格大学,CT 06269 306269 3.巴黎圣母院(Notre Dame),在46556 46556 4 Lajolla过敏和免疫学研究所,La Jolla,CA 92037癌症的突变曲目创造了使癌症免疫原性的新皮特。在这里,我们介绍了两个新型工具,这些工具以相对较高的精度识别了一小部分的新皮特(在数百种潜在的新皮上)通过抗肿瘤T细胞响应保护宿主。这两个工具由(a)突变序列与未分离的对应物之间的NetMHC得分的数值差异称为差分激光指数(DAI),以及(b)MHC I肽相互作用的构象稳定性。从机械上讲,这些工具识别出突变以创建用于MHC结合的新的锚固残基的新皮特,并使整体肽更加刚性。这些结果大大扩展了目标癌抗原的宇宙,并确定了人类癌症免疫疗法的新工具。我们将方法应用于mutliple独立肿瘤。令人惊讶的是,此处鉴定出的保护性新皮肤引起了CD8依赖性免疫力,尽管它们对KD的亲和力是比500 nm的阈值低的数量级,但被认为合理的这种相互作用。实际上,包括DAI算法在内的管道首先是在肿瘤细胞系的甲基甲基细胞系中进行经验得出的,然后在CMS5细胞系上进行了测试。通过DAI算法预测的抗肿瘤活性在CMS5中明显强大。这种变化很可能是甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基苯甲酸酯特有的免疫抑制机制的反映,因此与DAI算法本身的优点无关。此后,DAI算法在另一种小鼠肿瘤B16黑色素瘤和该系中T细胞反应的数据中进行了测试,与仅NETMHC的显着优越性一致。尽管本研究的重点是鉴定CD8 T细胞的MHC I限制表位,但该分析也可以扩展到CD4 T细胞的MHC II限制表位。
摘要 - 在大规模采用基于云的技术的驱动下,过去十年在全球范围内经历了巨大的数据中心的增长。除了该行业的能源消耗持续增加外,数据中心的扩散还引起了许多电网挑战。在这项研究中,分析了它们为需求灵活性做出贡献的潜力,从而在日间电力市场中探索了可用的灵活性和系统能源成本之间的权衡。数据中心的运行是在2030年爱尔兰电力部门的最低成本能源混合整数配方中建模的,从可变可再生能源中采购了70%的电气需求。随后对发电和需求时间表,能源成本,可再生能源削减,排放水平,工厂运营时间等的影响。,以证明大规模数据中心的增长如何影响系统履行其可再生义务的能力。
摘要。现代神经界面的市场尽管不幸的是,尽管它的积极发展,但可以为用户提供许多现有的原型,这些原型具有相对较低的人类操作员控制效果的准确性和识别可靠性。此外,市场上的任何神经界面都必须分别针对每个操作员量身定制,这使得很难使其准确性,精度和可靠性客观化。解决上述问题的第一步是对本文介绍的现有神经接口技术市场的不同价格段进行比较分析。市场研究表明,尽管脑电图的缺点,但它是在神经界面系统中记录生物学信号的最易接收的非侵入性方法之一。为了促进未来的研究,已经考虑并分析了神经界面中已知模型和信号分析方法的主要优势和缺点。尤其是在信号预处理,诸如共同平均参考,独立组件分析,常见空间模式,表面拉普拉斯,常见的空间空间模式和自适应滤波等方法的信号预处理,优势和缺点的情况下。在评估信号的信息特征,模型和方法的分析基于自动锻炼的自适应参数,双线性自动化,多维自动进程,快速傅立叶变换,小波转换,波包分解的模型。此外,对人类神经界面操作员的控制效应的最常见鉴定方法(识别)的比较分析,即,判别分析的方法,参考矢量的方法,非线性贝叶斯分类器,邻居的分类器,人造神经网络的分类器。神经界面技术的研究为研究人员提供了更多的基础,以选择神经接口系统的数学,软件和硬件,并为新版本的开发提供了提高的准确性,可靠性和可靠性。
本文分析了在线增强学习算法的复杂性,即Q学习和价值意识的异步实时版本,应用于确定性域中达到目标状态的问题。先前的工作得出的结论是,在许多情况下,Tabula Rasa强化学习是针对此类问题的指定的,或者只有在增强学习算法时才可以处理。我们表明,相反,算法是可以处理的,而任务表示或初始化的模拟更改。我们在最坏情况的复杂性上提供了紧密的界限,并显示出复杂性是如何较小的,如果系统性学习算法对状态空间或域具有某些特殊属性的初始了解。我们还提出了一种新颖的双向Q学习算法,以从所有状态到目标状态找到最佳路径,并表明它不比其他算法更复杂。
