摘要 — 量子通信功能的集成通常需要专用的光电元件,而这与电信系统的技术路线图并不相符。我们研究了商用相干收发器子系统在经典数据传输之后支持量子随机数生成的能力,并展示了如何将基于真空涨落的量子熵源转换为真正的随机数生成器。我们讨论了两种可能的实现方式,分别基于接收器和发射器中心架构。在第一种方案中,利用相干内差接收器中的平衡同差宽带检测来测量 90 度混合输入端的真空状态。在我们的原理验证演示中,在超过 11 GHz 的宽带宽上获得了 >2 dB 的光噪声和电噪声之间的间隙。在第二种方案中,我们提出并评估了重复使用偏振复用同相/正交调制器的监测光电二极管来实现相同目的。演示了 10 Gbaud 偏振复用正交相移键控数据传输的时间交错随机数生成。详细模型的可用性将允许计算可提取的熵,因此我们展示了两个原理验证实验的随机性提取,采用了双通用强提取器。索引术语 — 数字安全、多用途光子学、光通信设备、光信号检测、随机数生成
如今,矢量信号分析仪 (VSA) 用于在研究、制造和原型设计中测量数字信号的特性。现代 VSA 通常使用 > 20 GHz 的载波频率和高达 200 MHz 的解调带宽。随着新通信设备的出现,带宽预计将大幅增长,例如参见 [1]。VSA 使用各种架构,而通常输入信号在使用至少 12 位 A/D 转换器进行多次下变频后在基带中采样,信号的同相和正交分量由正交解调确定。解调器的标量(幅度)响应可以使用校准的功率计通过计量可追溯性确定,但由于 VSA 的原理,没有关于相位的信息。可追溯性是 ISO/IEC 17025 对校准实验室和仪器制造商的一项关键要求。在 [2] 中,概述了使用快速数字采样示波器 (DSO) 进行可追溯的幅度和相位特性测量的策略。VSA 和 DSO 都使用了宽带多正弦激励,而测量信号对两种仪器来说是共同的,可以通过反卷积去除。选择多正弦波形是因为相邻音调之间的幅度和相位关系是可计算的。DSO 可通过电光采样 (EOS) 进行追溯,它定义了仪器响应中频率分量的相对时间 [3]。NIST(美国)[4]、NPL(英国)[5] 和 PTB(德国)[6] 已经开发了这样的 EOS 系统。VSA 的详细内部架构只有其制造商知道,目前计量实验室面临着这些仪器可追溯校准的问题。然而,使用 DSO [2] 的方法相对复杂,不适合商业校准实验室的常规测量。本文提出了一种可追溯的方法