ProFound AI 可一次性购买,多年期许可证或本地订阅模式。一次性购买包括永久许可证和硬件服务器、安装和用户培训,费用在 25,000 英镑至 45,000 英镑之间。可单独购买其他许可证,费用在 15,000 英镑至 25,000 英镑之间,具体取决于许可证类型。许可证类型为仅 FFDM、仅 DBT 或 FFDM 和 DBT 的组合。保修后支持和软件更新通常占购买价格的 12% 至 15%。订阅定价基于所进行的研究量和类型(2D FFDM 或 3D DBT)。这包括安装、培训、持续支持和未来升级。硬件服务器单独出售。每次考试的典型价格为 1 至 3 英镑。
为了控制 COVID-19 疫情的蔓延,需要快速检测和诊断。虽然逆转录聚合酶链反应 (RT-PCR) 被用作诊断 COVID-19 的金标准方法,但许多科学家和医生指出,这种技术的变异性、准确性和可负担性存在一些挑战。与此同时,在中国疫情早期用于诊断 COVID-19 的放射学方法被许多人忽视,主要是因为它们的特异性低,难以进行鉴别诊断。然而,放射学方法的实用性不容忽视。事实上,在过去几个月里,印度的医疗顾问和放射科医生一直在使用或建议使用胸部高分辨率计算机断层扫描 (HRCT) 来早期诊断和追踪 COVID-19,特别是对于术前和无症状患者。与此同时,科学家们一直在尝试通过使用基于人工智能 (AI) 的解释模型来改进 COVID-19 诊断和监测的放射学方法。本综述旨在汇编和比较此类成果。为此,我们回顾并介绍了关于使用放射学和人工智能辅助放射学诊断和监测 COVID-19 的最新科学文献,强调了此类技术的优势和局限性。
给定输入数据(表示为由其特征响应定义的 d 维空间中的点的集合(在此示例中为 2D),通过将整个训练集发送到树中并优化分割节点的参数来优化所选的能量函数,从而训练决策树。
摘要简介:人工智能 (AI) 启发了计算机辅助药物发现。机器学习(尤其是深度学习)在多个科学学科中的广泛应用,以及计算硬件和软件的进步等因素继续推动这一发展。对于人工智能在药物发现中的应用,最初的大部分怀疑已经开始消失,从而使药物化学受益。涵盖的领域:回顾了人工智能在化学信息学中的现状。本文讨论的主题包括定量结构-活性/性质关系和基于结构的建模、从头分子设计和化学合成预测。强调了当前深度学习应用的优势和局限性,并展望了用于药物发现的下一代人工智能。专家意见:基于深度学习的方法才刚刚开始解决药物发现中的一些基本问题。某些方法上的进步,例如信息传递模型、空间对称性保持网络、混合从头设计和其他创新的机器学习范式,可能会变得很普遍,并有助于解决一些最具挑战性的问题。开放数据共享和模型开发将在利用人工智能推动药物发现方面发挥核心作用。
多发性骨髓瘤是全球第二常见的血液系统恶性肿瘤,发病率高和死亡率。尽管它被认为是一种无法治愈的疾病,但对这种肿瘤的了解增强导致了新的治疗方法,从而改善了患者的预期寿命。在临床试验,前瞻性注册和现实世界中的不同研究中,已经通过不同的研究生成了大量数据,这些研究已纳入了实验室测试,流量细胞术,分子标记,细胞遗传学,诊断图像和治疗,并将其用于常规临床实践。在这篇综述中,我们描述了如何使用不同的人工智能模型来处理和分析这些数据,旨在提高准确性并转化为临床上的好处,允许对早期诊断和响应评估进行实质性改进,加快分析加快分析,速度加快分析,减少对操作员偏见的劳动力密集型过程,并提供更高的参数信息,并提供更多的参数信息。此外,我们确定了人工智能如何允许开发综合模型,以预测对治疗的反应以及实现无法检测到的不可检测的可衡量可测量的残留疾病,无进展生存期和整体存活的可能性,从而导致更好的临床决策,从而有可能提高患者的个性化治疗,可以改善患者的能态。总体而言,人工智能有可能彻底改变多个骨髓瘤护理,这对于在前瞻性临床队列中进行验证是必要的,并开发模型以纳入常规的日常临床实践。
识别并最终消除吞吐量瓶颈是提高生产系统吞吐量和生产率的关键手段。然而,在现实世界中,消除吞吐量瓶颈是一项挑战。这是由于工厂动态环境复杂,数百台机器同时运行。学术研究人员试图开发工具来帮助识别和消除吞吐量瓶颈。从历史上看,研究工作一直集中在开发分析和离散事件模拟建模方法来识别生产系统中的吞吐量瓶颈。然而,随着工业数字化和人工智能 (AI) 的兴起,学术研究人员基于大量数字车间数据,探索了使用 AI 消除吞吐量瓶颈的不同方法。通过进行系统的文献综述,本文旨在介绍使用 AI 进行吞吐量瓶颈分析的最新研究成果。为了让学术界的 AI 解决方案更容易为实践者所接受,研究工作分为四类:(1)识别、(2)诊断、(3)预测和(4)开处方。这是受到现实世界吞吐量瓶颈管理实践的启发。识别和诊断类别侧重于分析历史吞吐量瓶颈,而预测和开处方侧重于分析未来的吞吐量瓶颈。本文还提供了未来的研究主题和实用建议,可能有助于进一步突破 AI 在吞吐量瓶颈分析中的理论和实际应用的界限。
1 IBM 欧洲研究中心,瑞士苏黎世 2 苏黎世联邦理工学院生物系统科学与工程系,瑞士苏黎世 3 IBM 阿尔马登研究中心,美国加利福尼亚州圣何塞 4 视觉放射学,美国德克萨斯州达拉斯 5 犹他大学健康科学中心放射学和影像科学系,美国犹他州盐湖城 6 塞顿医学中心放射学系,美国加利福尼亚州戴利城 7 阿苏塔医学中心放射学系,以色列特拉维夫 8 本·古里安大学医学院,以色列贝尔谢巴 9 耶路撒冷希伯来大学医学院哈达萨-希伯来大学医学中心放射学系,以色列耶路撒冷 10 盖伊和圣托马斯 NHS 基金会皇家布罗姆普顿和哈里菲尔德医院,英国伦敦 11 切尔西和威斯敏斯特医院,英国伦敦 12 伦敦帝国理工学院国家心肺研究所,英国伦敦 13 布鲁内尔大学健康、医学与生命科学学院伦敦,英国伦敦 14 IBM 海法研究中心,以色列海法 15 耶路撒冷希伯来大学医学院,以色列耶路撒冷 *通信地址:jab@zurich.ibm.com (JB),beymer@us.ibm.com (DB) https://doi.org/10.1016/j.patter.2021.100269
Intello 的人工智能可以根据智能手机拍摄的照片生成即时质量指标。这可以实现农产品分级,即对食品图像进行自动质量分析,这是一种准确可靠的方法,可根据颜色、大小和形状对新鲜产品(水果、谷物、蔬菜、棉花等)进行分级。其工具有助于实现质量评估的透明度和标准化,从而降低农业供应链中的价值风险和浪费。它已经开发出一种适用于水果、蔬菜和香料的即用型解决方案。
摘要 在过去十年中,水交换 (WE) 和人工智能 (AI) 取得了重大进展。WE 显著提高了腺瘤的检测率,而 AI 有可能帮助内镜医师检测到更多的息肉和腺瘤。我们使用以下关键词在 PubMed 上进行了电子文献检索:水辅助和水交换结肠镜检查、腺瘤和息肉检测、人工智能、深度学习、神经网络和计算机辅助结肠镜检查。我们回顾了 2010 年至 2020 年 5 月期间以英文发表的相关文章。从所审查出版物的参考文献列表中手动搜索了其他文章。我们讨论了 WE 和 AI 的最新进展,包括它们的优点和局限性。AI 可以减轻限制 WE 潜力的操作员相关因素。通过提高肠道清洁度和改善可视化,WE 可以提供优化 AI 在结肠镜检查中性能的平台。WE 和 AI 的优势可以相互补充,尽管它们各有弱点,但可以最大限度地提高腺瘤的检测率。
本简报中的胸部成像人工智能 (AI) 技术是独立的软件平台,使用机器或深度学习算法来分析或解释放射图像。一些技术允许将图像从医院传输到软件平台,该平台托管在 NHS 认可的安全数据中心。该软件使用专有算法分析胸部 DICOM(医学数字成像和通信)图像。图像分析可以直接发送回医院,以便使用医院系统(例如图片存档和通信系统 (PACS))和一些使用 DICOM 和 HL7 等协议的放射信息系统进行查看。一些技术还可能允许使用 Web 界面上传和查看图像和分析。