至关重要。[1–3] 人们做出了巨大研究努力,致力于开发新型电池材料,以提高循环寿命、安全性、能量密度和功率密度[4,5],同时研究也集中于理解可以替代主要液体电解质锂离子电池技术的新型电池化学。[6–10] 钠离子技术已成为最有前途的电池应用之一。[11–15] 有趣的是,虽然人们的注意力集中在某种特定的电池化学上,这种化学能使能量密度提高一个数量级[16,17],或在比容量或工作电压方面优于目前可用的电活性材料的特定电极材料上[18–20],但人们往往忽视电池界面在电池的安全性、功率能力、锂沉积物形态、保质期和循环寿命方面发挥的关键作用。[21]
摘要:硅是一种有希望的下一代阳极,可在商业石墨阳极上增加能量密度,但日历寿命仍然有问题。在这项工作中,使用扫描电化学显微镜来跟踪硅薄膜表面随时间表面的位点特异性反应性,以确定在形成的固体电解质相位相(SEI)(SEI)是否发生了不良的法拉达反应(SEI),在日历中,在四个情况下,在四个情况下,在1.5 v和100 mV之间的形式和1.1的形成(1)。 V和100 mV,随后的休息从(3)0.75 V和(4)100 mV开始。在所有情况下,硅的电钝化在3天的时间内随时间和潜力的增加而降低。随着钝化的减少,在500μm2面积上钝化的均匀性随时间降低。尽管反应性有一些局部“热点”,但钝化的面积均匀性表明全局SEI失败(例如,SEI溶解),而不是局部化(例如,破裂)失败。The silicon delithiated to 1.5 V vs Li/Li + was less passivated than the lithiated silicon (at the beginning of rest, the forward rate constants, k f , for ferrocene redox were 7.19 × 10 − 5 and 3.17 × 10 − 7 m/s, respectively) and was also found to be more reactive than the pristine silicon surface ( k f of 5 × 10 − 5 m/s).这种反应性可能是SEI氧化的结果。仅将细胞与li/li +截然不同时,表面仍在钝化(k f为6.11×10-6 m/s),但仍然比岩性表面(k f的3.03×10-9 m/s)少。这表明阳极的电势应保持在或低于〜0.75 v vs li/li +以防止SEI钝化。此信息将有助于调整电压窗口,以进行SI Half Half细胞和SI完整单元的操作电压以优化日历寿命。所提供的结果应鼓励研究界在日历老化期间研究化学而不是机械的故障模式,并停止使用1.5 V的典型惯例作为半细胞中循环SI的截止潜力。关键字:日历老化,硅,电池,SECM,钝化,SEI■简介
高能密度锂金属电池是首选的下一代电池系统,并用聚合物固态电解质代替易燃液体电解质是实现高安全性和高特异性设备的重要性。不幸的是,电极/电解质和Li树突生长之间的固体 - 固体接触较差的固有的棘手问题阻碍了其实际应用。The in-situ solidification has demonstrated a variety of advantages in the application of polymer electrolytes and artificial interphase, including the design of integrated polymer electrolytes and asymmetric polymer electrolytes to enhance the compatibility of solid–solid contact and compatibility between various electrolytes, and the construction of artificial interphase between the Li anode and cathode to suppress the formation of Li dendrites and to增强聚合物电解质的高压稳定性。本综述首先阐述了固态电池的原位固化历史,然后专注于固化电解质的合成方法。此外,总结了聚合物电解质的设计和人工之间的构建,原地固化技术的最新进展也得到了总结,并且强调了原位固化技术在增强安全性方面的重要性。最后,设想了前景,新兴挑战和实用固化的实际应用。
探测纳米颗粒重新执行和聚合物纳米复合结构中的聚合物基质之间形成的区域的机械行为,称为“相间”,这是一个主要挑战,因为这些区域很难通过实验方法进行研究。在这里,我们准确地表征了聚合物纳米复合材料的异质机械行为,重点是通过纳米力学模拟和数值均质化技术的组合来关注聚合物/纳米芯的相互作用。最初,使用详细的原子分子动力学模拟研究了用二氧化硅纳米颗粒加固的玻璃状聚(乙烷)聚合物纳米复合材料的全局机械性能,均以1.9%和12.7%的硅胶体积分数。接下来,通过探测在平衡处纳米列列附近的聚合物原子的密度分布曲线来鉴定聚合物/二氧化硅相间的厚度。根据此厚度,将相互间隙细分以检查机械性能的位置依赖性变化。然后,使用连续力学和原子模拟,我们继续计算有效的Young模量和Poisson的聚合物/纳米颗粒间相的比例,作为距纳米颗粒距离的函数。在最后一步中,提出了一个反数值均质化模型,以根据比较标准与MD的数据进行比较标准来预测相间的机械性能。发现结果是可以接受的,这增加了准确有效地预测纳米结构材料中界面特性的可能性。
摘要这项研究考虑了热塑性和热固性在界面处的延伸层压层之间的粘附。通过机械测试和显微镜研究了过程开始时热固性治愈程度的影响。提高初始治愈程度降低了层间断裂韧性和相间厚度。断裂韧性降低到相间厚度不成比例,这归因于相间形态的变化和界面处的表面接触降低。使用凝胶层厚度测量数据开发了一个简化的模型,以预测扩散水平,而初始治疗的初始度增加。与热固性 - 热固性共固化相比,在较低的初始治愈程度下具有优异的键强度,并且预测对初始治愈程度的敏感性提高,这表明过程变异性的影响更大。因此,对于特定财产的关键批判性,从半固定中潜在的制造效率提高与降低的效率之间的权衡将是一个重要的考虑因素。
固体电解质界面 (SEI) 是锂电池耐久性的关键,也与锂离子以外的多价电池有关。它的稳定性对于确保电池的高效运行至关重要,尤其是在电动汽车和高容量固定式储能系统等苛刻的环境中。不稳定的 SEI 会导致电池快速退化、容量损失和潜在的安全问题。我们的主要关注点是 SEI 的稳定性。感兴趣的主题包括但不限于以下内容:- 固体电解质界面 (SEI) - 锂电池 - 多价电池 - SEI 稳定性 - 电极-电解质界面 - 电解质添加剂 - 电化学技术 - 锂电镀 - 固态锂电池
本论文断言,小规模的机械测试提供了以其工程长度尺度捕获相间相互关系的结构 - 性关系所需的分辨率和多功能性。通过开发四个新型实验来探测控制复合韧性的相间特性,从而探索了这一点。首先,高分辨率的SEM DIC量化了整个热解碳(PYC)键层的显微镜弹性,在Young的模量和Poisson的比率中找到了与Pyc graphitic纹理直接相关的梯度。第二,应用自动对准的微验测试的应用实现了抗拉强度的可靠提取和SIC/PYC/SIC相间的最弱连接特性。第三,使用微柱压缩来评估11个复合相间条件,定义了一个现象学方程,以最终剪切强度作为纤维粗糙度,PYC厚度和与纤维表面正常的残留压缩应力的函数。还量化了辐射和制造引起的缺陷的影响。和第四,开发了一种新型的纤维螺纹技术,用于直接提取纤维/基质之间的环状降解。在四个条件下进行测试表明,摩擦依赖于高达1000个周期的粘合剂和磨料机制。在底面的事后表征揭示了PYC结构的无定形过渡的结晶。
如今,通过各种高通量技术的开发,可以很好地分析真核基因组的线性维度,从而可以进行基因组范围的方法。因此,他们的序列几乎没有谜,更容易质疑他们的进化和越来越多的研究旨在绘制其动态表观基因症状。这一进展引起了新的挑战,即使基因组重新恢复其三维核框架,以检查基因组的主要功能与相互相间细胞核的结构之间的相互作用,从而破译了核结构与功能之间的关系。因此,对核室有新的兴趣,其中一些描述了大约两个世纪前和3D核结构。因此,在动物和植物细胞中都在积极研究了相间细胞核的特殊复杂性,其有序结构以及该细胞器的动力学。已经了解了细胞核的组成和精细结构,以及其各种功能隔室的形成机理和动力学的机理。对染色质和其他核室之间的结构和功能相互作用有了更好的了解。这些研究伴随着特定的3D方法和工具的开发,例如3D成像和建模以及捕获染色体构象的方法。然而,关于植物中的染色质动力学还有很多尚待了解。已经发表了许多关于核组织各个方面的评论(De Wit and de Laat 2012; Dekker等,2013; Delgado等,2010; Dion and Gasser 2013; Rajapakse and Groudine 2011; Taddei and Gasser 2012; Towbin等,2012; Towbin等人,2013年)。在这篇综述中,我们总结了我们当前对模型植物拟南芥中相间核核区室的知识,并特别强调了异染色质。的确,这个隔室是高度塑料的,表现出大规模的重组并有助于基因组组织,而在细胞核尺度上的白染色质动力学几乎没有研究。我们还讨论了3D建模和定量技术,用于分析相互核的体系结构,这些核的结构仍处于thaliana的起步阶段。
图 1:kMC 模拟结束时气体种类 (a, b) 和 SEI 产物 (c, d) 的平均分数随施加电位的变化。模拟是在两种条件下进行的,反映了 SEI 形成的不同方式。为了模拟在靠近负极处形成 SEI 的情况,在形成显著的界面层 (a, c) 之前,允许在没有隧道势垒的情况下进行还原 (D = 0 . 0 ˚ A)。由于电极很可能在高施加电位下被覆盖,因此在实际电池环境中可能无法进入低电位区域 (低于 +0.5V vs Li/Li + 的施加电位)。因此,该区域已被阴影化。为了模拟远离负极处形成 SEI (b, d) 的情况,在存在部分电子绝缘的界面层的情况下,相对较厚的隧道势垒 (D = 10 . 0 ˚ A) 减缓了还原速度。提供了表示平均值标准误差的误差线,但通常太小而无法看到。
在锂负极上形成疏锂无机固体电解质界面 (SEI) 并在正极上形成正极电解质界面 (CEI) 对高压锂金属电池是有益的。然而,在大多数液体电解质中,有机溶剂的分解不可避免地会在 SEI 和 CEI 中形成有机成分。此外,有机溶剂由于其高挥发性和易燃性,通常会带来很大的安全风险。本文报道了一种基于低熔点碱性全氟磺酰亚胺盐的无有机溶剂共晶电解质。锂负极表面的独特阴离子还原产生了一种无机的、富含 LiF 的 SEI 膜,该膜具有很强的抑制锂枝晶的能力,这一点可以从 0.5 mA cm −2 和 1.0 mAh cm −2 时 99.4% 的高锂电镀/剥离 CE 以及 80°C 下全 LiNi 0.8 Co 0.15 Al 0.05 O 2 (2.0 mAh cm −2 ) || Li (20 μ m) 电池的 200 次循环寿命看出。所提出的共晶电解质有望用于超安全和高能锂金属电池。