检查。论文是:•Max Planck 23。4。1858 Kiel•Arnold Sommerfeld 5.12。 1868Königsberg•Albert Einstein 14。 3。 1879 ULM•Ernest Rutherford 30。 8。 1871 Spring Grove•Max Burn 11 12. 1882 Breslau•James Franck 26。 8。 1882 Hamburg•Niels Bohr 7。 10。 1885哥本哈根•ErwinSchrödinger12。 8。 1887 VIENNA•WOLFGANG PAULI 25。 4。 1900维也纳•Werner Heisenberg 5.12。 1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1858 Kiel•Arnold Sommerfeld 5.12。1868Königsberg•Albert Einstein 14。 3。 1879 ULM•Ernest Rutherford 30。 8。 1871 Spring Grove•Max Burn 11 12. 1882 Breslau•James Franck 26。 8。 1882 Hamburg•Niels Bohr 7。 10。 1885哥本哈根•ErwinSchrödinger12。 8。 1887 VIENNA•WOLFGANG PAULI 25。 4。 1900维也纳•Werner Heisenberg 5.12。 1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1868Königsberg•Albert Einstein 14。3。1879 ULM•Ernest Rutherford 30。 8。 1871 Spring Grove•Max Burn 11 12. 1882 Breslau•James Franck 26。 8。 1882 Hamburg•Niels Bohr 7。 10。 1885哥本哈根•ErwinSchrödinger12。 8。 1887 VIENNA•WOLFGANG PAULI 25。 4。 1900维也纳•Werner Heisenberg 5.12。 1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1879 ULM•Ernest Rutherford 30。8。1871 Spring Grove•Max Burn 11 12.1882 Breslau•James Franck 26。8。1882 Hamburg•Niels Bohr 7。10。1885哥本哈根•ErwinSchrödinger12。8。1887 VIENNA•WOLFGANG PAULI 25。 4。 1900维也纳•Werner Heisenberg 5.12。 1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1887 VIENNA•WOLFGANG PAULI 25。4。1900维也纳•Werner Heisenberg 5.12。1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1901Würzburg•Enrico Fermi 29。9。1901罗马•Paul Dirac 8。8。1902 Bristol•Pascual Jordan 18。10。1902 Hannover•Lew Landau 22。1。1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。7。1911佛罗里达•理查德·费曼(Richard Feynman)11。5。1918皇后区,纽约•朱利安·施温格12。2。1918纽约市
图3。(a)3D采集的来源和接收器位置,分别用黄色和白色圈子注释。2D采集的源和接收器位置用蓝色圆圈注释。红色矩形概述了3D区域。红色星星标志着Nore-1和Nore-2钻孔。(b)3D区域的细节,带有嵌入式和横线以及折叠的CDP箱尺寸为5 m,在线方向为5 m,在跨线方向上有15 m。蓝色和红色圆圈分别显示接收器和源点的位置。(a)中的航拍照片来自瑞典土地调查(Lantmateriet.se)。坐标在Sweref99 TM系统中。
摘要 - 本文专用于在锂离子电池单元的规模上使用PCM金属泡沫复合材料设计最佳热管理系统。研究了PCM和PCM金属泡沫复合材料吸收由锂离子细胞产生的热量的能力,开发了数学和数值模型。该建模基于从CERTES实验室中开发的新实验测试工作台进行的表征实验收集的数据。为了表征锂离子细胞的热行为,开发的二维数值模型集成了Brinkmann-Forchheimer扩展的Darcy方程,焓孔隙率法和二元能量方程。数值研究是通过耦合MATLAB和COMSOL多物理学进行的。结果表明,添加铝泡沫可以对细胞进行更有效的热管理。优化研究表明,低估厚度(所需的PCM质量)会导致极端温度。还发现,额外的PCM添加对细胞表面温度没有很大影响。
A Central area of a zone, m 2 32 A l Tunnel surface area in contact with the ground, m 2 33 C eff Effective volumetric specific heat capacity, J/m 3 /K 34 c f Specific heat of circulating fluid, J/kg/K 35 c p Specific heat capacity at constant pressure, J/kg/K 36 c s Specific heat of dry solid matrix, J/kg/K 37 c w Groundwater specific heat, J/kg/K 38 d在管壁的内径38 d,m 39 d的管壁外径,m 40 f d darcy摩擦因子41 h eq等效的对流传热系数,w/ m 2/ k 42 h f的对流传热系数循环流体的对流传热系数,w/ m 2/ m 2/ m 2/ m 2/ k 43 h t有线热传递系数,在空中传播系数,k 44 m/s45ṁ质量流量,kg/s 46 n孔隙率47 pr prandtl编号48
ISIS Criouet,Jean-Christophe Viennet,Etienne Balan,Fabien Baron,Arnaud Buch等。iCarus,2023,406,pp.115743。10.1016/j.icarus.2023.115743。hal-04300810
抽象简介:再生肌发生在成熟的肌纤维中起着至关重要的作用,可抵消神经肌肉疾病引起的肌肉损伤或功能障碍。专门的肌源性干细胞的激活(称为卫星细胞)本质上与增殖和分化有关,然后是肌细胞融合和多核肌纤维的形成。涵盖的区域:本报告概述了卫星细胞在神经肌肉系统中的作用以及蛋白质组学分析对生物标志物发现的潜在影响,以及鉴定新的治疗靶标在肌肉疾病中的影响。本文回顾了单细胞蛋白质组学对卫星细胞,成肌细胞和心肌细胞进行系统分析的方式,可以帮助更好地理解肌纤维再生过程。专家意见:为了更好地理解神经肌肉疾病中的卫星细胞功能障碍,基于质谱的蛋白质组学是一种出色的大规模分析工具,用于对病理生理过程进行系统分析。可以通过机械/酶促解离方案通常执行优化的肌肉衍生细胞的隔离,然后在专用的流式细胞仪中进行荧光激活的细胞分类。使用标记的自由定量方法或使用串联质量标签的方法是研究干细胞在神经肌肉疾病中的病理生理作用的理想生物分析方法。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
分流电流是在流动电池堆栈中产生的难以捉摸的效果,尽管这是内部损失的主要原因,但仍受到部分关注,直接影响效率和可操作性。现有研究用电阻器网络对其进行建模。首次,由于同源电极之间的电势差,本文对在流体电解质中移动的电荷载体进行了基础分析。将钒化学作为研究案例,用Navier-Stokes,Nernst-Planck and Cancervertice方程分析了离子V 2+,V 2+,V 3+,VO 2+,H+,HSO 4 - ,SO 4 2的导电性,扩散和对流运动。3D和2D数值实现允许分析稳态和瞬态条件。分流电流的贡献是在不同尺寸和不同负载下的堆栈中计算出来的,这表明功率损耗范围从5细胞堆栈中的0.17%到40细胞堆栈中的6.9%不等,在较低的负载电流下较高。该方法允许识别影响分流电流的主要因素,例如膜的渗透率,电极孔隙率和流通道设计。这些结果阐明了减轻分流电流的策略,以提高效率。
S。Maqsood A,B,*,S。Mumtaz C,M。A. Javed D,M。Attiqus Salam A,E,E,Khalid M. Elhindi F A Lahore -54000 B物理学的Wahdat Road wahdat Road Govt的物理学系,GC Polysics(CASP),GC University,lahore colication and libiolicy kc and libioloy -54000 colohory -00000 co。大学,首尔01897,韩国d数学系,加利福尼亚大学,拉合尔-54000,巴基斯坦e物理系,GC大学,拉合尔-54000,巴基斯坦F植物生产系,食品与农业科学学院,国王Saud University,Saud University,P.O.Box 2460,Riyadh 11451,沙特阿拉伯在这项研究中,我们介绍了对卤化物双重perovskites CS 2 AUSBX 6(X = CL,BR,I)的特征的经验研究,并强调结构,机械,机械和光电元素,以及热电学能力。对热和结构耐用性的评估涉及测量制造和公差比的焓。在结构中相同位置用溴(BR)和碘(I)代替氯(CL)导致晶格特性的激增,并且大量弹性减少。使用弹性系数的模量计算弹性表明其柔性特征。对电带结构的检查表明,它具有间接的带隙特征。强调了许多特征的适用性,例如介电系数,灭绝系数,反射率,电子电导率,热电导率以及Seebeck系数,并强调用于光伏和热小工具。(2024年9月29日收到; 2024年12月5日接受)关键词:热性能,光学特征,双钙钛矿卤化物,间接类型的带隙半导体材料材料1。引入全球人口的指数增长以及各种高级电子设备的广泛利用导致能源需求的持续增长,而当前的化石燃料无法满足[1,2]。为了解决日益增长的全球能源消耗,获得可再生和环保能源至关重要[3]。专家正在积极寻求具有成本效益,环保且非常有效的能源替代方案来满足需求[4]。太阳能由于其可及性和生态友好而是所有形式的可持续能源之间的最佳选择[5]。根据研究结果,利用来自太阳的一个小时的光线可以产生足够的电能,以满足全年的全球电力需求。太阳能是丰富而强大的电力来源。如果我们利用并将其转变为电力,它有可能以当前形式维持全球人口二十七年的时间[6,7]。石油和煤中的所有能量与地球连续三天内接收的太阳辐射量相同[8,9]。太阳能是指太阳发出的电磁辐射,可以利用通过使用太阳能电池来产生温暖或电力[10]。太阳能电池可分为三代。最初的太阳能电池耐用且可靠,利用硅