在硫化氢H 3 s中发现超导性(MB)的超导性,然后在金属多氢液中发现,从二元,lah 10等开始,并以三元的结尾,包括(la,y)h 10,彻底改变了凝聚态物理学领域。这些发现增强了解决在室温下产生超导材料的百年历史问题的希望。在过去5年在MB压力下进行的实验中,除了合成Hy-Dive本身之外,还使用光学,X射线和Mossbauer光谱研究了它们的物理特性,以及电磁性测量技术。本文提出了狂热研究的主要结果,包括高静态(最多21 t)和脉冲(最高70 t)磁场的测量。在低于临界T C值的温度下,电阻的测量值降至消失的水平,随着磁场的增加以及磁性筛选,临界温度t c的降低,表明多氢化物的超导状态。同位素效应的测量结果,以及磁杂质对t c的影响,表明电子配对的电子波机理。然而,在超导和正常状态中,多水中的电子电子相关性绝不是很小的。这可能正是尚未收到令人满意的解释的多氢化物的异常特性,例如第二个临界场h c 2(t)的线性温度依赖性,电阻ρ(t)的线性依赖性,线性磁心敏感的线性依赖性,与P. l. kapitza的线性磁势相似,与P. L. kapitza的发现非常相似。
本文讨论了储能问题。这一重要问题与可再生能源的持续转型有关。液态空气储能 (LAES) 是一种适用于大规模储能的机械储能技术。本文介绍了一种通过将 LAES 与跨临界二氧化碳循环相结合来提高其效率的方法。为此,本文对两个 Kapitza LAES 系统与跨临界 CO 2 循环进行了数值分析:并联和后续模式。在这两种情况下,最大化 CO 2 压力都有助于提高整体效率。将余热引导至 CO 2 循环才是有利可图的。相反,在膨胀前降低空气温度以期为 CO 2 循环提供更多热量实际上会产生更糟糕的结果。并联系统实施可以将存储效率提高 5-6%,具体取决于其他因素。相比之下,后续系统只能将存储效率提高约 3.5%-5%。
超导射频(SRF)腔使用沿轴的电场加速颗粒[1]。加速梯度E ACC是一个关键的性能度量,因为较高的梯度缩短了给定能量所需的加速器长度。然而,最大值受腔的材料特性的约束。第一个限制因素是材料的超导式,尤其是临界较低的领域(B C 1)和过热场(B SH)[2-5]。随着E ACC的影响,峰表面磁场b 0上升,其中b 0 = ge acc,由腔设计设置为g。最初,腔仍然处于Meissner状态,但是随着场的增加,涡流渗透,导致RF损失和淬火。Meissner状态在B C 1处具有亚稳态,上限为B sh。因此,在B C 1和B sh之间的亚稳带中,最大值可实现的字段b(max)0受约束。在电子均值自由路径上均延伸,与残余电阻率比(RRR)相关。另一个限制来自材料的热稳定性。即使没有表面缺陷,例如正常情况下的残基,地形不规则或弱质体沉淀,表面电阻的指数温度依赖性r s也会产生一个反馈反馈循环[6,7]。(1/2)r S H 2 0之间的这种反馈,而所得温度上升会导致与缺陷无关的热失控,超过阈值范围,B运行。阈值B运行取决于诸如表面电阻,腔壁厚度,导热率和Kapitza电导等因素。这些基本限制B C 1,B SH和B运行可以通过使用高RRR使用高纯度niobium来增强。尽管众所周知,较高的RRR与理论领域之间的联系是众所周知的,但数十年来具有不同RRR值的腔测试的综合总结仍然不可用。此简短说明从1980年代到2020年代编译了数据[8-21],RRR值范围从30到500到
[1] Intel:Intel软件后卫(Intel SGX),https://www.intel.com/content/www/us/en/products/ docs/accelerator-eengerator-eengerator-eengines/offect-guard-extensions。html。[2] AMD:AMD安全加密虚拟化(SEV),https://www.amd.com/ja/developer/sev.html。[3] ARM:Cortex-A用Trustzone,https://www.arm.com/ja/technologies/trustzone-for-cortex-a。[4] Keystone:用于架构T恤的开放框架,https://keystone-enclave.org/。[5]值得信赖的固件:op-tee,https:// www。trusted firmware.org/projects/op-tee。[6]开放式:open-tee,https://open-tee.github.io/。[7] Google:可信赖的T恤 - Android开源项目,https://source.android.com/docs/security/features/features/trusty?hl = ja。[8] Cerdeira,D.,Martins,J.,Santos,N。和Pinto,s。:区域:第31届USENIX Security Security Enmposium,PP。2261–2279(2022)。[9] GlobalPlatform:GlobalPlatform主页,https:// globalplatform.org/。[10] GlobalPlatform:GlobalPlatform技术TEE核心API规范版本1.3.1(2021)。[11] GlobalPlatform:GlobalPlatform设备技术TEE客户API规范版本1.0(2010)。[12] Menetrey,J。,Pasin,M.,Felber,P。和Schiavoni,V。:WATZ:可信赖的WebAssembly运行时环境,具有Trustzone的远程证明,第2022 IEEE 42届国际分布式计算系统的国际会议(2022222)。[13] op-tee:optee OS在4.0.0,https://github.com/ op-tee/optee/optee OS/tree/4.0.0。[14]运算:受信任的应用程序,https:// optee。readthedocs.io/en/latest/building/trusted应用程序。html。[15] QEMU:QEMU-通用和开源机器模拟器和虚拟机,https://www.qemu.org/。[16] Arnautov,S.,Trach,B.,Gregor,F.,Knauth,T.,Martin,A.,Priebe,C.,Lind,J.,Muthukumaran,D. Intel SGX,第12 USENIX操作系统设计和实施研讨会,pp。689–703(2016)。[17] Tsai,C.,Porter,D。E.和Vij,M。:石墨烯-SGX:用于SGX上未修改应用程序的实用库OS,2017年USENIX年度技术会议,pp。645–658(2017)。[18] Shen,Y.,Tian,H.,Chen,Y.,Chen,K.,Wang,R.,Xu,Y.[19] Wasix:Wasix- Wasi的超集,https:// wasix。org/。[20] Ramesh,A.,Huang,T.,Titzer,B。L.和Rowe,A。:停止隐藏锋利的刀:WebAssembly Linux interface,arxiv.org e-Print Archive,arXiv:2312.03858v1(2023)。